Gene Details:

Functional Descriptions:

  • Expression of OsDREB1A and OsDREB1B was induced by cold, whereas expression of OsDREB2A was induced by dehydration and high-salt stresses.
  • Over-expression of OsDREB1A in transgenic Arabidopsis induced over-expression of target stress-inducible genes of Arabidopsis DREB1A resulting in plants with higher tolerance to drought, high-salt, and freezing stresses.
  • OsDREB1A is potentially useful for producing transgenic monocots that are tolerant to drought, high-salt, and/or cold stresses.
  • Northern analysis showed that the transcripts of OsDREBL accumulated rapidly (within 30 min) in response to low temperature, but not in response to ABA, NaCl and dehydration treatments.
  • Comparative time-course expression analysis indicated that ENAC1 expression, similar with OsDREB1A, was induced very quickly by various abiotic stresses including salt, drought, cold, and exogenous abscisic acid.
  • These results suggested that OsDREBL may function as a transcription factor in the cold-stress response, independent of the DREB signal-transduction pathway.
  • However, the induction of ENAC1 by abiotic stress was transient and lasted up to 3 h, whereas that of OsDREB1A maintained longer.
  • Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D.
  • In order to understand whether natural genetic variation in these two loci leads to cold tolerance or susceptibility, OsDREB1A and OsDREB1B were targeted across several rice genotypes showing differential response to low temperature.
  • In addition, transcription of OsCNGC9 is activated by a rice dehydration responsive element binding transcription factor, OsDREB1A.

Literature:

Gene Resources:

Sequences:

cDNA Sequence
  • >LOC_Os09g35030.1
    ATCGCCATTACCACACTCGAGCAGAGCAAATACAGTTCAGGAATCAGGAGCAAGCAGAAACACACACACAAATCCGAAGATGTGCGGGATCAAGCAGGAGATGAGCGGCGAGTCGTCGGGGTCGCCGTGCAGCTCGGCGTCGGCGGAGCGGCAGCACCAGACGGTGTGGACGGCGCCGCCGAAGAGGCCGGCGGGGCGGACCAAGTTCAGGGAGACGAGGCACCCGGTGTTCCGCGGCGTGCGGCGGAGGGGCAATGCCGGGAGGTGGGTGTGCGAGGTGCGGGTGCCCGGGCGGCGCGGCTGCAGGCTCTGGCTCGGCACGTTCGACACCGCCGAGGGCGCGGCGCGCGCGCACGACGCCGCCATGCTCGCCATCAACGCCGGCGGCGGCGGCGGCGGGGGAGCATGCTGCCTCAACTTCGCCGACTCCGCGTGGCTCCTCGCCGTGCCGCGCTCCTACCGCACCCTCGCCGACGTCCGCCACGCCGTCGCCGAGGCCGTCGAGGACTTCTTCCGGCGCCGCCTCGCCGACGACGCGCTGTCCGCCACGTCGTCGTCCTCGACGACGCCGTCCACCCCACGCACCGACGACGACGAGGAGTCCGCCGCCACCGACGGCGACGAGTCCTCCTCCCCGGCCAGCGACCTGGCGTTCGAACTGGACGTCCTGAGTGACATGGGCTGGGACCTGTACTACGCGAGCTTGGCGCAGGGGATGCTCATGGAGCCACCATCGGCGGCGCTCGGCGACGACGGTGACGCCATCCTCGCCGACGTCCCACTCTGGAGCTACTAGAGCTCAATCAACTGTACAATTTTGCCTCTTTTTTCTCTCTTTTCTGGCTTCCGATGCCAAAATTTTGGTACTGTACGGACACTACTTTCGGTAATGTGATGGAACAAGTTGCAAAACACAGAGCATCTTCATTTGAGTCATTGACTTCCCAAAATAGTACTGTAGATTTTTTTTTAGCATCTGCGAGCCGTCCTCGTGTAGAAACAGTTTCTTGACAGTATTGTTTCTGCACGAGAACTACAGTGACGAGAGATTGGATGGTACAGTACTTAGGTTACAGTGTTAACGACAGTGAAAAAAAACCTGGTTTTGTCAATGATGTTCGTACTGGGTAACCTATGCATTCGAGTGCAATTGACCGTGGATCTCTCTCAAGCAATTTCACTTG
CDS Sequence
  • >LOC_Os09g35030.1
    ATGTGCGGGATCAAGCAGGAGATGAGCGGCGAGTCGTCGGGGTCGCCGTGCAGCTCGGCGTCGGCGGAGCGGCAGCACCAGACGGTGTGGACGGCGCCGCCGAAGAGGCCGGCGGGGCGGACCAAGTTCAGGGAGACGAGGCACCCGGTGTTCCGCGGCGTGCGGCGGAGGGGCAATGCCGGGAGGTGGGTGTGCGAGGTGCGGGTGCCCGGGCGGCGCGGCTGCAGGCTCTGGCTCGGCACGTTCGACACCGCCGAGGGCGCGGCGCGCGCGCACGACGCCGCCATGCTCGCCATCAACGCCGGCGGCGGCGGCGGCGGGGGAGCATGCTGCCTCAACTTCGCCGACTCCGCGTGGCTCCTCGCCGTGCCGCGCTCCTACCGCACCCTCGCCGACGTCCGCCACGCCGTCGCCGAGGCCGTCGAGGACTTCTTCCGGCGCCGCCTCGCCGACGACGCGCTGTCCGCCACGTCGTCGTCCTCGACGACGCCGTCCACCCCACGCACCGACGACGACGAGGAGTCCGCCGCCACCGACGGCGACGAGTCCTCCTCCCCGGCCAGCGACCTGGCGTTCGAACTGGACGTCCTGAGTGACATGGGCTGGGACCTGTACTACGCGAGCTTGGCGCAGGGGATGCTCATGGAGCCACCATCGGCGGCGCTCGGCGACGACGGTGACGCCATCCTCGCCGACGTCCCACTCTGGAGCTACTAG
Protein Sequence
  • >LOC_Os09g35030.1
    MCGIKQEMSGESSGSPCSSASAERQHQTVWTAPPKRPAGRTKFRETRHPVFRGVRRRGNAGRWVCEVRVPGRRGCRLWLGTFDTAEGAARAHDAAMLAINAGGGGGGGACCLNFADSAWLLAVPRSYRTLADVRHAVAEAVEDFFRRRLADDALSATSSSSTTPSTPRTDDDEESAATDGDESSSPASDLAFELDVLSDMGWDLYYASLAQGMLMEPPSAALGDDGDAILADVPLWSY*