Gene Details:

Functional Descriptions:

  • To investigate the possibility of similar mechanisms operating in the control of inflorescence architecture in rice, we analysed the functions of Rcn1 and RCN2, rice TFL1/CEN homologs.
  • Phenotypic analyses of Rcn1 and tillering dwarf 3 (d3) double mutants at the seedling stage clarified that Rcn1 works independently of D3 in the branching inhibitor pathway.
  • Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control.
  • The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5.
  • Thus, Rcn11 will shed new light on vegetative growth control under low temperature.
  • The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.
  • A root development comparison between Rcn1 and Rcn11 in young seedlings represented that Rcn11 reduced crown root number and elongation, whereas Rcn1 reduced lateral root density and elongation.
  • We isolated a novel reduced culm number mutant, designated reduced culm number11 (Rcn11), by screening under low-temperature condition in a paddy fields.
  • In 35S::Rcn1 and 35S::RCN2 transgenic rice plants, the delay of transition to the reproductive phase was observed.
  • Mutant genes, reduced culm number 1 (Rcn1) and bunketsuwaito tillering dwarf (d3), affect tiller number in rice (Oryza sativa L.
  • Genetic interaction between 2 tillering genes, reduced culm number 1 (Rcn1) and tillering dwarf gene d3, in rice.
  • In addition, Rcn1 is expressed in the crown root primordia, endodermis, pericycle and stele in the root.
  • A new Rcn1 mutant, designated as S-97-61 exhibited a reduction in tiller number and plant stature to about the same level as the previously reported original Rcn1 mutant.
  • The reduction in tillering by the Rcn1 mutation was independent of the d3 genotype, and tillering number of d3Rcn1 double mutant was between those of the d3 and Rcn1 mutants.
  • These results demonstrated that the Rcn1 gene was not involved in the D3-associated pathway in tillering control.
  • The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (Rcn1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant.
  • Constitutive overexpression of Rcn1 or RCN2 in Arabidopsis caused a late-flowering and highly branching phenotype, indicating that they possess conserved biochemical functions as TFL1.
  • No effect on Rcn1 expression in shoots or roots was seen when the roots were treated with auxins.
    • Here, characterization of rice (Oryza sativa) reduced culm number 1 (Rcn1) mutants revealed that Rcn1 positively controls shoot branching by promoting the outgrowth of lateral shoots.
  • Overexpression ofRcn1andRCN2, riceTERMINAL FLOWER 1/CENTRORADIALIShomologs, confers delay of phase transition and altered panicle morphology in rice.
    • Rcn1 is the first functionally defined plant ABCG protein gene that controls shoot branching and could thus be significant in future breeding for high-yielding rice.
    • Rcn1 is expressed in leaf primordia of main and axillary shoots, and in the vascular cells and leaf epidermis of older leaves.
  • RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).
  • In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens.
  • We discovered that a rice reduced culm number1 (Rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil.
  • RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions.
  • These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.
  • The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5.
  • A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type.
  • ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in Rcn1 mutant (A684P) and Rcn1-RNAi than in wild-type plants.
  • Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in Rcn1 mutants.
  • Stomata closure mediated by exogenous ABA application was strongly reduced in Rcn1 mutants.
  • Finally, Rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants.

Literature:

Gene Resources:

  • NCBI ID:
  • UniProt accessions:

Sequences:

cDNA Sequence
  • >LOC_Os03g17350.1
    GTATACTTGTATTGGTAAGAGACTAAGAGAGTGAGCTTGCCGGAGATGTCGCGGTTTGTCGACAAGCTGCCGCTGTTCGACCGGAGGCCGTCGCCGATGGAGGAGGCCGAGGGCCTCCCGCGCAGTGGCTATCTTGGGCAGCTGCACCACCACCAGTACTACCAGCCGCACAGCAACATGCTGCCGCTGGAGCAGTCGCCGCCGACGAGCACGAAGCACACGTCGGTCACGCTCGCGCAGCTCCTGAAGCGCGTGAACGACGCGCGCAGCGGGTCGTCGACGCCCATCTCGTCGCCGCGCTACACCATCGAGCTGGGCGGGTCCAAGCCGGAGTCCGTCAGCAGCGAGAGCGACGACCACCACTCCGACGACGGCGGCAGCGAGGGGCAGCCGAGGGCGCTCGTGCTCAAGTTCACCGACCTGACGTACAGCGTGAAGCAGCGGAGGAAGGGGTCGTGCCTGCCGTTCCGTCGTGCGGCGGCGGACGAGCCCGAGCTGCCCGCGATGAGGACGCTGCTCGACGGCATCTCCGGCGAGGCCCGGGACGGCGAGATCATGGCGGTGCTCGGCGCGAGCGGGTCCGGCAAGAGCACGCTCATCGACGCGCTCGCCAACCGCATCGCCAAGGAGAGCCTCCACGGCTCCGTCACGATCAACGGCGAGTCCATCGACAGCAACCTGCTCAAGGTCATCTCAGCGTACGTCCGGCAGGAGGACCTTCTGTACCCGATGCTCACCGTCGAGGAGACGCTCATGTTCGCCGCCGAGTTCCGCCTGCCGCGCTCCCTCCCCACCAGGGAGAAGAAGAAGCGGGTGAAGGAGCTAATCGACCAGCTCGGCCTGAAGAGAGCGGCGAACACGATCATCGGCGACGAGGGCCACCGCGGCGTGTCGGGAGGCGAGCGCCGGCGCGTCTCCATCGGTGTCGACATCATCCACAACCCGATCATGCTGTTCCTCGACGAGCCCACCTCCGGGCTGGACTCCACCAGCGCGTTCATGGTGGTGACGGTCCTCAAGGCCATCGCGCAGAGCGGCAGCGTCGTCGTCATGTCCATCCACCAGCCGAGCTACCGCATCCTCGGCCTCCTCGACCGCCTCCTGTTCCTCTCCCGCGGGAAGACGGTGTACTACGGCCCGCCGAGCGAGCTGCCGCCGTTCTTCCTCGACTTCGGCAAGCCCATCCCGGACAACGAGAACCCGACGGAGTTCGCGCTGGACCTCATCAAGGAGATGGAGACCGAGACGGAGGGGACCAAGCGTCTCGCCGAGCACAACGCGGCGTGGCAGCTGAAGCACCACGGGGAAGGCCGCGGGTACGGCGGCAAGCCGGGGATGTCCCTCAAGGAGGCCATCAGCGCCAGCATCTCGCGCGGGAAGCTCGTGTCCGGCGCGACCGACGGCACCGTGTCGGTCGCCGCCTCCGACCATTCTGCGCCGCCGCCGTCGTCGTCGTCCGTGTCCAAGTTCGTCAACCCGTTCTGGATCGAGATGGGGGTGCTGACGCGTCGCGCGTTCATCAACACGAAGCGCACGCCGGAGGTGTTCATCATCCGCCTCGCGGCGGTGCTGGTCACCGGGTTCATCCTCGCCACCATCTTCTGGCGCCTGGACGAGTCGCCCAAGGGCGTGCAGGAGCGGCTGGGCTTCTTCGCCATCGCCATGTCCACCATGTACTACACCTGCTCCGACGCGCTCCCGGTGTTCCTCAGCGAGCGCTACATCTTCCTCAGGGAGACGGCGTACAACGCGTACCGCCGCTCATCCTACGTGCTCTCCCACACCATCGTCGGCTTCCCGTCGCTCGTGGTTCTCTCCTTCGCGTTCGCGCTCACCACCTTCTTCTCCGTGGGGCTCGCCGGTGGCGTGAACGGGTTCTTCTACTTCGTGGCAATCGTGCTGGCCTCCTTCTGGGCGGGGAGCGGCTTCGCCACGTTCCTCTCCGGCGTGGTGACGCACGTGATGCTGGGGTTCCCCGTGGTGCTCTCCACGCTCGCCTACTTCCTCCTCTTCAGCGGCTTCTTCATCAACCGCGACAGGATCCCGCGCTACTGGCTGTGGTTCCACTACATCTCGCTCGTCAAGTACCCGTACGAGGCGGTGATGCAGAACGAGTTCGGCGACCCGACGAGGTGCTTCGTCCGCGGCGTGCAGATGTTCGACAACACGCCGCTGGCGGCGCTGCCGGCGGCGGTCAAGGTGCGGGTGCTGCAGTCCATGTCGGCGTCGCTCGGCGTGAACATCGGCACGGGGACGTGCATCACCACGGGACCGGACTTCCTGAAGCAGCAGGCGATCACCGACTTCGGCAAGTGGGAGTGCCTCTGGATCACCGTCGCGTGGGGATTCCTCTTCCGCATCCTCTTCTACATCTCGCTGCTGCTCGGCAGCAGGAACAAGCGGAGGTAGACGACGACGACGACCACCTTGCTGATCGATCAGTAGCTCGTACGTGATAGCGATCGTCACCTCGTCTCACCGCAGCGGCGGCGTGGACCGGCCGGCTTCGTTGGAGCAAGCGACGCGTGGGACACCATTGGTTGCATGGTTTCCCTTGTTTTTTTTTTCACTTGTTAAACATTTCGATGTTTTTTGATTAACCGCCTGTGATTAACATGGGACGGGAGTTGTTTGTAAAATTTGTGTGCAAGTTGCAAGTCGAAATTGTATCTGGATGATATGACATTTTTTTTTCACTTCGATCGTTAGTTCCAGTTTCTCGTTTCC
CDS Sequence
  • >LOC_Os03g17350.1
    ATGTCGCGGTTTGTCGACAAGCTGCCGCTGTTCGACCGGAGGCCGTCGCCGATGGAGGAGGCCGAGGGCCTCCCGCGCAGTGGCTATCTTGGGCAGCTGCACCACCACCAGTACTACCAGCCGCACAGCAACATGCTGCCGCTGGAGCAGTCGCCGCCGACGAGCACGAAGCACACGTCGGTCACGCTCGCGCAGCTCCTGAAGCGCGTGAACGACGCGCGCAGCGGGTCGTCGACGCCCATCTCGTCGCCGCGCTACACCATCGAGCTGGGCGGGTCCAAGCCGGAGTCCGTCAGCAGCGAGAGCGACGACCACCACTCCGACGACGGCGGCAGCGAGGGGCAGCCGAGGGCGCTCGTGCTCAAGTTCACCGACCTGACGTACAGCGTGAAGCAGCGGAGGAAGGGGTCGTGCCTGCCGTTCCGTCGTGCGGCGGCGGACGAGCCCGAGCTGCCCGCGATGAGGACGCTGCTCGACGGCATCTCCGGCGAGGCCCGGGACGGCGAGATCATGGCGGTGCTCGGCGCGAGCGGGTCCGGCAAGAGCACGCTCATCGACGCGCTCGCCAACCGCATCGCCAAGGAGAGCCTCCACGGCTCCGTCACGATCAACGGCGAGTCCATCGACAGCAACCTGCTCAAGGTCATCTCAGCGTACGTCCGGCAGGAGGACCTTCTGTACCCGATGCTCACCGTCGAGGAGACGCTCATGTTCGCCGCCGAGTTCCGCCTGCCGCGCTCCCTCCCCACCAGGGAGAAGAAGAAGCGGGTGAAGGAGCTAATCGACCAGCTCGGCCTGAAGAGAGCGGCGAACACGATCATCGGCGACGAGGGCCACCGCGGCGTGTCGGGAGGCGAGCGCCGGCGCGTCTCCATCGGTGTCGACATCATCCACAACCCGATCATGCTGTTCCTCGACGAGCCCACCTCCGGGCTGGACTCCACCAGCGCGTTCATGGTGGTGACGGTCCTCAAGGCCATCGCGCAGAGCGGCAGCGTCGTCGTCATGTCCATCCACCAGCCGAGCTACCGCATCCTCGGCCTCCTCGACCGCCTCCTGTTCCTCTCCCGCGGGAAGACGGTGTACTACGGCCCGCCGAGCGAGCTGCCGCCGTTCTTCCTCGACTTCGGCAAGCCCATCCCGGACAACGAGAACCCGACGGAGTTCGCGCTGGACCTCATCAAGGAGATGGAGACCGAGACGGAGGGGACCAAGCGTCTCGCCGAGCACAACGCGGCGTGGCAGCTGAAGCACCACGGGGAAGGCCGCGGGTACGGCGGCAAGCCGGGGATGTCCCTCAAGGAGGCCATCAGCGCCAGCATCTCGCGCGGGAAGCTCGTGTCCGGCGCGACCGACGGCACCGTGTCGGTCGCCGCCTCCGACCATTCTGCGCCGCCGCCGTCGTCGTCGTCCGTGTCCAAGTTCGTCAACCCGTTCTGGATCGAGATGGGGGTGCTGACGCGTCGCGCGTTCATCAACACGAAGCGCACGCCGGAGGTGTTCATCATCCGCCTCGCGGCGGTGCTGGTCACCGGGTTCATCCTCGCCACCATCTTCTGGCGCCTGGACGAGTCGCCCAAGGGCGTGCAGGAGCGGCTGGGCTTCTTCGCCATCGCCATGTCCACCATGTACTACACCTGCTCCGACGCGCTCCCGGTGTTCCTCAGCGAGCGCTACATCTTCCTCAGGGAGACGGCGTACAACGCGTACCGCCGCTCATCCTACGTGCTCTCCCACACCATCGTCGGCTTCCCGTCGCTCGTGGTTCTCTCCTTCGCGTTCGCGCTCACCACCTTCTTCTCCGTGGGGCTCGCCGGTGGCGTGAACGGGTTCTTCTACTTCGTGGCAATCGTGCTGGCCTCCTTCTGGGCGGGGAGCGGCTTCGCCACGTTCCTCTCCGGCGTGGTGACGCACGTGATGCTGGGGTTCCCCGTGGTGCTCTCCACGCTCGCCTACTTCCTCCTCTTCAGCGGCTTCTTCATCAACCGCGACAGGATCCCGCGCTACTGGCTGTGGTTCCACTACATCTCGCTCGTCAAGTACCCGTACGAGGCGGTGATGCAGAACGAGTTCGGCGACCCGACGAGGTGCTTCGTCCGCGGCGTGCAGATGTTCGACAACACGCCGCTGGCGGCGCTGCCGGCGGCGGTCAAGGTGCGGGTGCTGCAGTCCATGTCGGCGTCGCTCGGCGTGAACATCGGCACGGGGACGTGCATCACCACGGGACCGGACTTCCTGAAGCAGCAGGCGATCACCGACTTCGGCAAGTGGGAGTGCCTCTGGATCACCGTCGCGTGGGGATTCCTCTTCCGCATCCTCTTCTACATCTCGCTGCTGCTCGGCAGCAGGAACAAGCGGAGGTAG
Protein Sequence
  • >LOC_Os03g17350.1
    MSRFVDKLPLFDRRPSPMEEAEGLPRSGYLGQLHHHQYYQPHSNMLPLEQSPPTSTKHTSVTLAQLLKRVNDARSGSSTPISSPRYTIELGGSKPESVSSESDDHHSDDGGSEGQPRALVLKFTDLTYSVKQRRKGSCLPFRRAAADEPELPAMRTLLDGISGEARDGEIMAVLGASGSGKSTLIDALANRIAKESLHGSVTINGESIDSNLLKVISAYVRQEDLLYPMLTVEETLMFAAEFRLPRSLPTREKKKRVKELIDQLGLKRAANTIIGDEGHRGVSGGERRRVSIGVDIIHNPIMLFLDEPTSGLDSTSAFMVVTVLKAIAQSGSVVVMSIHQPSYRILGLLDRLLFLSRGKTVYYGPPSELPPFFLDFGKPIPDNENPTEFALDLIKEMETETEGTKRLAEHNAAWQLKHHGEGRGYGGKPGMSLKEAISASISRGKLVSGATDGTVSVAASDHSAPPPSSSSVSKFVNPFWIEMGVLTRRAFINTKRTPEVFIIRLAAVLVTGFILATIFWRLDESPKGVQERLGFFAIAMSTMYYTCSDALPVFLSERYIFLRETAYNAYRRSSYVLSHTIVGFPSLVVLSFAFALTTFFSVGLAGGVNGFFYFVAIVLASFWAGSGFATFLSGVVTHVMLGFPVVLSTLAYFLLFSGFFINRDRIPRYWLWFHYISLVKYPYEAVMQNEFGDPTRCFVRGVQMFDNTPLAALPAAVKVRVLQSMSASLGVNIGTGTCITTGPDFLKQQAITDFGKWECLWITVAWGFLFRILFYISLLLGSRNKRR*