Gene Details:
- MSU gene ID: LOC_Os02g41510
- RAPdb gene ID: Os02g0624300
- Gene Symbol: OsMYB30 OsMYB5P
- Genome: MSU7 , IRGSP-1.0
- Species: Oryza sativa
Functional Descriptions:
- These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes.
- These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine tune the starch breakdown and the content of maltose which might contribute to the cold tolerance as a compatible solute.
- The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing beta-amylase expression.
- In this study, we characterized a cold-responsive R2R3-type MYB gene OsMYB30 for its regulatory function in cold tolerance in rice (Oryza sativa).
- Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the OsMYB30 knockout mutant showed increased cold tolerance.
- These results indicate that OsMYB5P is associated with the regulation of shoot development and root- system architecture.
- OsMYB5P protein is localized to the nucleus and functions as a transcription activator in plant development.
- Overexpression of OsMYB5P in rice and Arabidopsis (Arabidopsis thaliana Col-0) increases tolerance to phosphate starvation, whereas OsMYB5P knock-out through RNA interference increases sensitivity to Pi depletion in rice.
- Together, these results demonstrate that overexpression of OsMYB5P increases tolerance to Pi deficiency in plants by modulating Pi transporters at the transcriptional level in monocots and dicots.
- Overexpression of OsMYB5P led to increased Pi accumulation in shoots and roots.
- In addition, overexpression of OsMYB5P in Arabidopsis triggered increased expression of AtPht1;3, an Arabidopsis Pi transporter, in shoots and roots under normal and Pi-deficient conditions.
- Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter.
- Here, we report the involvement of the OsMYB30 gene in the bsr-d1-mediated blast resistance.
- We further find that OsMYB30 binds to and activates the promoters of 4-coumarate:coenzyme A ligase genes (Os4CL3 and Os4CL5) resulting in accumulation of lignin subunits G and S.
- It acts as a positive regulator of cold tolerance by repressing some cold-related genes such as OsWRKY45-1, OsSRFP1, OsCYL4 and OsMYB30.
- Under cold stress treatments, the transcription of four cold-related genes OsWRKY45-1, OsSRFP1, OsCYL4, and OsMYB30 was repressed in OsGATA16-overexpressing (OE) rice compared with wild-type (WT).
Function-related keywords:
- starch , tolerance , transcription-factor , cold-tolerance , shoot , development , architecture , nucleus , plant-development , Pi , transcription-activator , phosphate , pi , phosphate-transport , phosphate-starvation , phosphate-acquisition , resistance , blast , lignin , blast-resistance , cold-stress , stress , cold
Literature:
- The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression . DOI: 10.1104/pp.16.01725 ; PMID: 28062835
- The MAMP-Responsive MYB Transcription Factors MYB30, MYB55 and MYB110 Activate the HCAA Synthesis Pathway and Enhance Immunity in Rice . DOI: 10.1093/pcp/pcy062 ; PMID: 29562362
- Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter . DOI: 10.1371/journal.pone.0194628 ; PMID: 29566032
- Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves . DOI: 10.1111/nph.16505 ; PMID: 32112568
- OsGATA16, a GATA Transcription Factor, Confers Cold Tolerance by Repressing OsWRKY45-1 at the Seedling Stage in Rice . DOI: 10.1186/s12284-021-00485-w ; PMID: 33982131
Related News:
Gene Resources:
Sequences:
cDNA Sequence
- >LOC_Os02g41510.1
CAGCATCACACAGACGACGCAGCATCAGCAACACACACACACACCGAGCAATCAATCCATCACACACAAACACAAACAAACGCACAGGGCGCGAGAGCTCGAACGAGAGGAGGAAAGGTCGGCAATGGGGAGGGCGCCGTGCTGCGAGAAGATGGGGCTGAAGAGGGGGCCGTGGACGGCGGAGGAGGACAGGATCCTGGTGGCGCACATCGAGCGGCACGGGCACAGCAACTGGCGCGCGCTGCCGAGGCAGGCCGGCCTTCTCCGCTGCGGCAAGAGCTGCCGCCTCCGGTGGATCAACTACCTCCGCCCCGACATCAAGCGCGGCAACTTCACCCGCGAGGAGGAGGACGCCATCATCCACCTCCACGACCTTCTCGGCAACCGATGGTCCGCGATTGCAGCGAGGCTGCCGGGGAGGACGGACAACGAGATCAAGAATGTGTGGCACACTCACCTCAAGAAGCGGCTGGAGCCGAAGCCGTCGTCCGGCCGGGAAGCCGCCGCGCCCAAGCGAAAGGCGACCAAGAAGGCTGCGGCGGTGGCGGTGGCGATCGACGTTCCGACCACCGTGCCGGTGTCGCCGGAGCAGTCGCTCTCGACCACGACGACGTCGGCCGCCACCACCGAGGAGTACTCGTACTCGATGGCCTCCTCCGCGGATCACAACACCACGGACAGTTTCACCTCGGAGGAGGAGTTCCAGATCGACGACAGCTTCTGGTCGGAGACGCTGGCAATGACGGTGGACAGCACCGACTCCGGGATGGAGATGAGCGGCGGCGATCCTCTCGGCGCGGGCGGTGCCTCGCCGTCGTCGAGCAACGACGACGACATGGACGACTTCTGGCTCAAGCTGTTCATCCAGGCCGGTGGCATGCAGAATTTGCCCCAGATTTAATTTAGGCAGAGAATTGGCCTCTTGGGTCGATCTCTTGTTCATTTTTCTTACCACCACTATTCTTTGAATCTTTGGAGCTGTGTAAATCTTTACAAAGCGGAGAGATTGATGGGAAACGAAAGAAGGCAATATTATCTTTCA
CDS Sequence
- >LOC_Os02g41510.1
ATGGGGAGGGCGCCGTGCTGCGAGAAGATGGGGCTGAAGAGGGGGCCGTGGACGGCGGAGGAGGACAGGATCCTGGTGGCGCACATCGAGCGGCACGGGCACAGCAACTGGCGCGCGCTGCCGAGGCAGGCCGGCCTTCTCCGCTGCGGCAAGAGCTGCCGCCTCCGGTGGATCAACTACCTCCGCCCCGACATCAAGCGCGGCAACTTCACCCGCGAGGAGGAGGACGCCATCATCCACCTCCACGACCTTCTCGGCAACCGATGGTCCGCGATTGCAGCGAGGCTGCCGGGGAGGACGGACAACGAGATCAAGAATGTGTGGCACACTCACCTCAAGAAGCGGCTGGAGCCGAAGCCGTCGTCCGGCCGGGAAGCCGCCGCGCCCAAGCGAAAGGCGACCAAGAAGGCTGCGGCGGTGGCGGTGGCGATCGACGTTCCGACCACCGTGCCGGTGTCGCCGGAGCAGTCGCTCTCGACCACGACGACGTCGGCCGCCACCACCGAGGAGTACTCGTACTCGATGGCCTCCTCCGCGGATCACAACACCACGGACAGTTTCACCTCGGAGGAGGAGTTCCAGATCGACGACAGCTTCTGGTCGGAGACGCTGGCAATGACGGTGGACAGCACCGACTCCGGGATGGAGATGAGCGGCGGCGATCCTCTCGGCGCGGGCGGTGCCTCGCCGTCGTCGAGCAACGACGACGACATGGACGACTTCTGGCTCAAGCTGTTCATCCAGGCCGGTGGCATGCAGAATTTGCCCCAGATTTAA
Protein Sequence
- >LOC_Os02g41510.1
MGRAPCCEKMGLKRGPWTAEEDRILVAHIERHGHSNWRALPRQAGLLRCGKSCRLRWINYLRPDIKRGNFTREEEDAIIHLHDLLGNRWSAIAARLPGRTDNEIKNVWHTHLKKRLEPKPSSGREAAAPKRKATKKAAAVAVAIDVPTTVPVSPEQSLSTTTTSAATTEEYSYSMASSADHNTTDSFTSEEEFQIDDSFWSETLAMTVDSTDSGMEMSGGDPLGAGGASPSSSNDDDMDDFWLKLFIQAGGMQNLPQI*