Gene Details:
- Gene ID: AT5G24470
- Gene Symbol: APRR5, PRR5
- Gene Name: pseudo-response regulator 5, pseudo-response regulator 5
- Description: two-component response regulator-like protein;(source:Araport11)
- TAIR Accession: locus:2184007
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
Gene Ontology:
- GO:0009640 — acts upstream of or within — photomorphogenesis
- GO:0006355 — acts upstream of or within — regulation of DNA-templated transcription
- GO:0007623 — acts upstream of or within — circadian rhythm
- GO:0005634 — located in — nucleus
- GO:0000156 — enables — phosphorelay response regulator activity
- GO:0051170 — acts upstream of or within — import into nucleus
- GO:0045892 — acts upstream of or within — negative regulation of DNA-templated transcription
- GO:0009736 — involved in — cytokinin-activated signaling pathway
- GO:0003677 — enables — DNA binding
- GO:0010114 — acts upstream of or within — response to red light
- GO:0010218 — acts upstream of or within — response to far red light
- GO:0005515 — enables — protein binding
- GO:0005622 — located in — intracellular anatomical structure
Germplasm Phenotype:
- CS9384 — Has reciprocal period defects for multiple circadian rhythms, consistent with subtly altered expression patterns of the Circadian clock-associated gene (CCA1) and the Timing of CAB Expression gene (TOC1); rising and/or falling phases of transcripts are slightly advanced compared to Col; shorter circadian period relative to Col (1.0-2.4 hours ); alters the period of CCA1 expression in blue light by 2 hours, affects the period of CCR2 expression in red and blue light to a lesser extent, but had no effect on the period of CCA1 expression in red light or of CCR2 expression in darkness; seedlings show mild long-hypocotyl phenotype when grown under constant red or blue light at a range of fluence rates; circadian effects are complementary, light-dependent and inconsistent with the serial activation of PRR genes.
- CS9386 — Pseudo-response regulator double mutant; leaf movements remain robustly rhythmic with a period indistinguishable from the wild type Col.
Function-related keywords:
Literature:
- Light response of the circadian waves of the APRR1/TOC1 quintet: when does the quintet start singing rhythmically in Arabidopsis? DOI: 10.1093/pcp/pce036 ; PMID: 11266585
- Two-component circuitry in Arabidopsis cytokinin signal transduction. DOI: 10.1038/35096500 ; PMID: 11574878
- Two-component signal transduction pathways in Arabidopsis. DOI: 10.1104/pp.005504 ; PMID: 12068096
- Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis. DOI: 10.1093/pcp/pcf166 ; PMID: 12461138
- Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. DOI: 10.1093/pcp/pcd043 ; PMID: 11100772
- Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. DOI: 10.1007/s00425-003-1106-4 ; PMID: 12955513
- Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. DOI: 10.1093/jxb/erh226 ; PMID: 15310821
- The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. DOI: 10.1093/pcp/pci061 ; PMID: 15695441
- PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. DOI: 10.1105/tpc.104.029504 ; PMID: 15705949
- PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. DOI: 10.1093/pcp/pci086 ; PMID: 15767265
- Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). DOI: 10.1093/pcp/pci087 ; PMID: 15767264
- phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. DOI: 10.1111/j.1365-313X.2006.02914.x ; PMID: 17076805
- Characterization of circadian-associated pseudo-response regulators: II. The function of PRR5 and its molecular dissection in Arabidopsis thaliana. DOI: 10.1271/bbb.60584 ; PMID: 17284847
- Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. DOI: 10.1271/bbb.70048 ; PMID: 17420570
- Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana. DOI: 10.1093/pcp/pcm063 ; PMID: 17519251
- Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. DOI: 10.1093/pcp/pcm056 ; PMID: 17504813
- Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana. DOI: 10.1093/pcp/pcm178 ; PMID: 18178585
- Involvement of Arabidopsis clock-associated pseudo-response regulators in diurnal oscillations of gene expression in the presence of environmental time cues. DOI: 10.1093/pcp/pcn165 ; PMID: 19015137
- Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. DOI: 10.1093/pcp/pcp004 ; PMID: 19131357
- PRR5 (PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana. DOI: 10.1271/bbb.69.426 ; PMID: 15725674
- Characterization of genetic links between two clock-associated genes, GI and PRR5 in the current clock model of Arabidopsis thaliana. DOI: 10.1271/bbb.80321 ; PMID: 18838788
- Linkage between circadian clock and tricarboxylic acid cycle in Arabidopsis. DOI: 10.1073/pnas.0900952106 ; PMID: 19820331
- PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. DOI: 10.1105/tpc.109.072892 ; PMID: 20233950
- F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. DOI: 10.1105/tpc.109.072843 ; PMID: 20354196
- TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. DOI: 10.1105/tpc.110.074518 ; PMID: 21183706
- LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. DOI: 10.1105/tpc.110.081661 ; PMID: 21357491
- REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. DOI: 10.1371/journal.pgen.1001350 ; PMID: 21483796
- Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system. DOI: 10.1016/j.phytochem.2011.02.029 ; PMID: 21477822
- HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. DOI: 10.1073/pnas.1110406108 ; PMID: 21949396
- Transcriptional repressor PRR5 directly regulates clock-output pathways. DOI: 10.1073/pnas.1205156109 ; PMID: 23027938
- Molecular mechanisms of circadian rhythm in Lotus japonicus and Arabidopsis thaliana are sufficiently compatible to regulate heterologous core clock genes robustly. DOI: 10.1271/bbb.120538 ; PMID: 23221703
- The unique function of the Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response. DOI: 10.4161/psb.23534 ; PMID: 23333981
- A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. DOI: 10.1105/tpc.112.108340 ; PMID: 23371945
- LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. DOI: 10.1105/tpc.114.126573 ; PMID: 25012192
- LNK1 and LNK2 recruitment to the evening element require morning expressed circadian related MYB-like transcription factors. DOI: 10.1080/15592324.2015.1010888 ; PMID: 25848708
- Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. DOI: 10.1098/rsob.150042 ; PMID: 26468131
- A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response Regulators in Arabidopsis. DOI: 10.1104/pp.15.01562 ; PMID: 26586835
- Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. DOI: 10.1105/tpc.15.00737 ; PMID: 26941090
- LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. DOI: 10.1038/ncomms13181 ; PMID: 27734958
- CORRECTION. A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response Regulators in Arabidopsis. DOI: 10.1104/pp.16.00089 ; PMID: 26826726
- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. DOI: 10.1105/tpc.16.00354 ; PMID: 27837007
- COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response. DOI: 10.1111/jipb.12512 ; PMID: 27990760
- Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis. DOI: 10.1016/j.cub.2017.12.021 ; PMID: 29337078
- The HAF2 protein shapes histone acetylation levels of PRR5 and LUX loci in Arabidopsis. DOI: 10.1007/s00425-018-2921-y ; PMID: 29789923
- PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. DOI: 10.1093/nar/gkz191 ; PMID: 30892623
- Luciferase-Based Screen for Post-translational Control Factors in the Regulation of the Pseudo-Response Regulator PRR7. DOI: 10.3389/fpls.2019.00667 ; PMID: 31191580
- 3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity. DOI: 10.1093/pcp/pcz183 ; PMID: 31529098
- TRANSPARENT TESTA GLABRA 1 participates in flowering time regulation in Arabidopsis thaliana. DOI: 10.7717/peerj.8303 ; PMID: 31998554
- Pseudo Response Regulators Regulate Photoperiodic Hypocotyl Growth by Repressing PIF4/5 Transcription. DOI: 10.1104/pp.19.01599 ; PMID: 32165445
- Co-expression Networks From Gene Expression Variability Between Genetically Identical Seedlings Can Reveal Novel Regulatory Relationships. DOI: 10.3389/fpls.2020.599464 ; PMID: 33384705
- The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. DOI: 10.1093/plcell/koab168 ; PMID: 34152411
- BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. DOI: 10.1093/plcell/koab133 ; PMID: 34164694
- The 5'-3' mRNA Decay Pathway Modulates the Plant Circadian Network in Arabidopsis. DOI: 10.1093/pcp/pcac126 ; PMID: 36066193
- ZTL regulates thermomorphogenesis through TOC1 and PRR5. DOI: 10.1111/pce.14542 ; PMID: 36655421
- B-Box proteins BBX28 and BBX29 interplay with PSEUDO-RESPONSE REGULATORS to fine-tune circadian clock in Arabidopsis. DOI: 10.1111/pce.14648 ; PMID: 37312621
- Two-component signal transduction pathways in Arabidopsis. DOI: 10.1104/pp.005504 ; PMID: 12068096
- Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. DOI: 10.1093/pcp/pcd043 ; PMID: 11100772
- phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. DOI: 10.1111/j.1365-313X.2006.02914.x ; PMID: 17076805
Sequences:
cDNA Sequence
- >AT5G24470.1
ATGACTAGTAGCGAGGAAGTAGTTGAAGTGACGGTGGTTAAAGCACCTGAAGCTGGCGGAGGAAAGTTATCACGTCGGAAGATTCGGAAGAAAGACGCCGGTGTTGATGGTTTGGTGAAGTGGGAGAGATTTCTCCCGAAAATCGCGCTTAGAGTTTTGCTCGTTGAAGCTGATGATTCTACTAGACAGATTATCGCTGCTCTTCTCAGGAAATGTAGTTACAGAGTTGCTGCAGTACCTGATGGCTTAAAAGCTTGGGAGATGCTAAAAGGAAAGCCTGAAAGTGTTGATTTGATATTAACAGAGGTTGATCTACCTTCAATATCTGGATATGCTCTGCTAACACTTATCATGGAGCATGATATTTGCAAGAACATTCCTGTTATAATGATGTCGACACAGGACTCGGTGAATACTGTGTATAAGTGTATGTTGAAAGGTGCGGCTGATTATCTTGTTAAGCCGTTGAGGAGGAATGAGCTTAGAAATCTTTGGCAGCATGTCTGGAGAAGACAAACTTCACTTGCTCCTGATAGCTTTCCATGGAATGAGAGTGTTGGACAGCAGAAAGCCGAGGGTGCGTCTGCAAACAACTCGAACGGAAAGAGAGACGATCATGTTGTGAGTGGGAATGGTGGTGATGCCCAGAGCTCGTGTACAAGACCAGAGATGGAAGGTGAGAGCGCAGACGTGGAGGTTAGTGCGAGAGACGCAGTACAGATGGAGTGCGCAAAGTCTCAGTTTAATGAGACACGGCTTCTAGCAAATGAGTTGCAGAGTAAGCAAGCAGAAGCCATTGACTTCATGGGAGCATCGTTTAGAAGAACTGGACGACGTAACAGAGAAGAAAGTGTTGCTCAATACGAATCTCGGATAGAGCTTGATCTTTCTCTGAGAAGACCTAATGCTTCTGAGAACCAATCTTCTGGAGACCGGCCTTCTCTTCATCCTTCTAGTGCCTCAGCTTTCACACGGTACGTTCACAGGCCGTTGCAGACACAATGTTCAGCCTCCCCAGTGGTTACTGATCAAAGAAAGAATGTTGCAGCAAGTCAAGATGATAACATTGTGCTAATGAACCAATACAATACATCTGAACCGCCTCCAAATGCTCCAAGAAGAAACGACACCAGCTTTTACACTGGAGCTGACTCACCTGGTCCACCGTTTAGTAATCAGCTGAATTCTTGGCCGGGACAGAGTTCATACCCTACGCCAACCCCTATCAACAATATACAGTTCAGAGATCCCAACACAGCTTATACATCTGCAATGGCTCCTGCTTCACTCTCCCCAAGCCCTAGTTCCGTTAGCCCGCATGAGTACAGTTCCATGTTTCACCCATTCAACAGTAAACCCGAGGGGTTACAAGACCGGGATTGTTCCATGGATGTAGATGAGAGGAGATACGTCTCTTCTGCAACCGAACATAGTGCAATAGGCAATCACATTGATCAGCTTATTGAGAAGAAGAACGAAGATGGCTATTCATTATCCGTCGGGAAAATTCAGCAATCTCTTCAACGAGAAGCCGCTTTAACCAAATTCCGAATGAAGCGAAAGGACAGATGTTATGAGAAAAAGGTTCGTTACGAGAGCCGGAAGAAATTAGCAGAGCAACGACCACGAATCAAAGGCCAATTCGTTCGTCAAGTCCAATCCACACAAGCTCCATAG
CDS Sequence
Protein Sequence