Information report for AT5G23020
Gene Details
|
|
Functional Descriptions
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009047 — stem — caña (Spanish, exact), culm (exact), eje primario (Spanish, exact), primary axis (exact), primary stem (exact), tallo (Spanish, exact), tronco (Spanish, exact), 茎 (Japanese, exact), bole (narrow), cane (narrow), caudex (narrow), caudices (narrow), core (narrow), primocane (narrow), scape (narrow), stalk (narrow), trunk (narrow)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
- GO:0019761 — acts upstream of or within — glucosinolate biosynthetic process
- GO:0009098 — acts upstream of or within — leucine biosynthetic process
- GO:0009507 — located in — chloroplast
- GO:0003852 — enables — 2-isopropylmalate synthase activity
- GO:0000215 — enables — 2-(2-methylthio)ethylmalate synthase activity
Functional Keywords
- root , vascular leaf , stem , root , guard cell
Literature and News
- Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. DOI: 10.1074/jbc.M308435200 ; PMID: 14576160
- Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. DOI: 10.1007/s00425-003-1184-3 ; PMID: 14740211
- The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. DOI: 10.1104/pp.104.046482 ; PMID: 15347784
- Genomic survey of gene expression diversity in Arabidopsis thaliana. DOI: 10.1534/genetics.105.049353 ; PMID: 16204207
- Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. DOI: 10.1007/s00299-005-0078-1 ; PMID: 16432629
- Glucosinolate metabolism and its control. DOI: 10.1016/j.tplants.2005.12.006 ; PMID: 16406306
- Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. DOI: 10.1007/s00726-005-0251-4 ; PMID: 16552493
- Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. DOI: 10.1534/genetics.106.056986 ; PMID: 16702431
- Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. DOI: 10.1007/s11103-005-5547-y ; PMID: 16649108
- Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. DOI: 10.1104/pp.106.081240 ; PMID: 16648215
- Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. DOI: 10.1105/tpc.105.039339 ; PMID: 17056707
- Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. DOI: 10.1104/pp.106.085555 ; PMID: 17189332
- Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. DOI: 10.1104/pp.106.090662 ; PMID: 17189325
- MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. DOI: 10.1104/pp.106.091579 ; PMID: 17369439
- Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. DOI: 10.1104/pp.107.111609 ; PMID: 18162591
- Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling. DOI: 10.1186/1471-2164-9-154 ; PMID: 18400103
- Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. DOI: 10.1104/pp.108.115733 ; PMID: 18375600
- The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. DOI: 10.1371/journal.pone.0002068 ; PMID: 18446225
- Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. DOI: 10.1111/j.1365-313X.2012.05021.x ; PMID: 22487254
- Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. DOI: 10.1104/pp.112.207324 ; PMID: 23073694
- The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana. DOI: 10.3389/fpls.2015.00343 ; PMID: 26029237
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- Isolation and expression analysis of the isopropylmalate synthase gene family of Arabidopsis thaliana. DOI: 10.1093/jxb/erf112 ; PMID: 12432038
- MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. DOI: 10.1104/pp.106.091579 ; PMID: 17369439
Gene Resources
Sequences
cDNA Sequence
- >AT5G23020.1
CTCCACCTCATTGCAAAACAATTTCCCCACTATCTATCCTCCATAATATAGTATTCTTCTTTTCTCTCCTACTTTCTCTATAGTAATGGCTTCGTTACTTCTCACATCGTCGAGTATGATAACCACTAGCTGTCGCTCCATGGTTCTCCGGTCAGGGTTACCCATCGGATCTTCTTTTCCCTCTCTTCGCCTGACCCGTCCATACGACAAGGCGACTCTGTTCGTCTCATGTTGCTCCGCTGAGTCCAAAAAGGTGGCAACTAGTGCTACTGATCTCAAACCTATCATGGAACGGAGGCCGGAGTACATTCCGAACAAGCTTCCCCACAAGAACTATGTGCGTGTATTAGACACGACGCTTCGTGACGGTGAACAATCTCCCGGTGCAGCACTTACTCCACCGCAGAAGTTAGAGATTGCCAGGCAGCTAGCTAAACTCCGAGTAGACATCATGGAAGTTGGTTTTCCGGTGTCGTCTGAGGAAGAATTCGAAGCTATTAAAACCATCGCCAAGACCGTGGGGAACGAGGTGGATGAGGAAACCGGTTACGTTCCTGTGATATGCGGCATTGCACGATGCAAAAAGAGAGACATCGAGGCAACTTGGGAGGCACTGAAGTATGCGAAGAGGCCGAGGGTAATGCTATTCACATCTACTAGTGAAATTCACATGAAATATAAGTTGAAAAAGACTAAAGAAGAAGTGATCGAGATGGCCGTGAACAGTGTTAAGTACGCTAAAAGCTTGGGCTTCAAAGACATCCAATTTGGGTGCGAAGATGGCGGCAGGACGGAGAAAGATTTTATATGTAAGATTCTAGGAGAATCGATAAAAGCGGGTGCAACCACGGTGGGGTTTGCGGACACGGTCGGGATCAACATGCCGCAAGAATTCGGAGAACTCGTGGCCTATGTCATAGAAAACACTCCAGGGGCTGATGATATTGTCTTCGCCATTCATTGTCATAACGACCTTGGTGTTGCTACCGCCAACACAATATCCGGTATATGTGCGGGAGCAAGACAAGTCGAAGTGACGATCAACGGAATTGGTGAAAGAAGTGGGAATGCGCCGCTTGAAGAGGTCGTGATGGCTTTGAAATGTCGAGGAGAATCTCTGATGGATGGTGTTTACACAAAAATAGACTCACGCCAAATTATGGCTACAAGCAAGATGGTTCAAGAGCATACCGGCATGTATGTTCAACCACATAAGCCAATAGTTGGAGACAACTGTTTTGTTCATGAGAGCGGCATTCACCAGGATGGAATATTGAAAAATCGAAGTACATATGAGATCTTATCACCAGAAGATGTTGGGATCGTAAAATCTGAAAATTCTGGCATTGTTCTTGGAAAGCTTAGCGGACGTCATGCTGTAAAAGACCGGCTTAAAGAGTTGGGATATGAAATCAGTGATGAGAAATTCAACGACATCTTCTCACGATACAGAGAATTAACGAAGGACAAAAAGAGAATCACAGACGCTGATCTGAAGGCATTAGTGGTGAACGGTGCTGAAATCTCATCAGAAAAATTAAACAGTAAAGGAATTAACGACCTTATGTCAAGCCCTCAGATTTCCGCTGTTGTATAAGTTTGGGAAGACATTGTGTAATTTTGTACTACGATGGTATTAAGTCACTTTTGTTTTACTGTGTTTTGTGTACTATATATACGTACCTTTTGGTTTTTATGTTATCGTTGTAATGAATAAAACAGTATTAATAGGGAGTGTTTTTATTCTATAATTAAACTCTCTTTTTTATAATGATTTTCACCAAAGTATTGGAAATTTAAACAAACATTACCATATTCCATTGAAGATT
CDS Sequence
Protein Sequence