Gene Details:
- Gene ID: AT5G20730
- Gene Symbol: ARF7, BIP, IAA21, IAA23, IAA25, MSG1, NPH4, TIR5
- Gene Name: AUXIN RESPONSE FACTOR 7, BIPOSTO, indole-3-acetic acid inducible 21, indole-3-acetic acid inducible 23, indole-3-acetic acid inducible 25, MASSUGU 1, NON-PHOTOTROPHIC HYPOCOTYL, TRANSPORT INHIBITOR RESPONSE 5
- Description: Transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-like protein;(source:Araport11)
- Description: Derives_from AT5G20730;(source:Araport11)
- TAIR Accession: locus:2180469
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000016 — lateral root primordium — portion of lateral root primordium tissue (exact), primordio de raíz lateral (Spanish, exact), 側根原基 (Japanese, exact)
- PO:0009015 — portion of vascular tissue — porción de tejido vascular (Spanish, exact), vascular tissue (exact), 維管束細胞の一部 (Japanese, exact), vascular system (related)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
Gene Ontology:
- GO:0005515 — enables — protein binding
- GO:0009785 — acts upstream of or within — blue light signaling pathway
- GO:0009733 — acts upstream of or within — response to auxin
- GO:0006355 — involved in — regulation of DNA-templated transcription
- GO:0045893 — acts upstream of or within — positive regulation of DNA-templated transcription
- GO:0010311 — acts upstream of or within — lateral root formation
- GO:0048366 — acts upstream of or within — leaf development
- GO:0009638 — acts upstream of or within — phototropism
- GO:0006355 — acts upstream of or within — regulation of DNA-templated transcription
- GO:0009723 — acts upstream of or within — response to ethylene
- GO:0005634 — located in — nucleus
- GO:0009630 — acts upstream of or within — gravitropism
- GO:0048527 — acts upstream of or within — lateral root development
Germplasm Phenotype:
- CS24607 — impaired phototropic and gravitropic response in hypocotyls; reduced numbers of lateral roots; epinastic rosette leaves; reduced auxin sensitivity in hypocotyl growth
- CS24625 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24625 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24625 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24625 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24625 — nph4-1 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- CS24626 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24626 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24626 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24626 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24626 — nph4-1 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- CS24627 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24627 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24627 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24627 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24627 — msg1-2 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- CS24628 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24628 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24628 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24628 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24628 — msg1-2 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- CS24629 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24629 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24629 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24629 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24629 — arf7-1 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- CS24630 — The double mutant exhibits much stronger auxin-related phenotypes than those of the single mutants. Adult double mutant plants have thin and short inflorescence stems, and their rosette leaves are small and epinastic. In addition, it has reduced numbers of inflorescence stems, suggesting enhanced apical dominance. By contrast, its flowers appear to be normal, and they fertilize normally.
- CS24630 — The double mutant mutant displays agravitropic responses in both hypocotyls and roots. When seedlings are grown vertically under dark conditions, the regulation of growth orientation is disrupted in both hypocotyls and roots, with the hypocotyls occasionally growing downward and the roots upward. Also, the roots and hypocotyls of the double mutant show reduced gravitropic curvatures compared with the wild type when vertically dark-grown seedlings are reoriented by 90°.
- CS24630 — The phenotype of the double mutant is most obvious at its seedling stage, with its most prominent phenotype being severely impaired lateral root formation. Its primary roots fail to produce lateral roots in 2-week-old seedlings. However, double mutant seedlings start to generate several lateral roots after ~2 weeks of growth, and their morphological appearance is normal.
- CS24630 — The phototropic response toward blue light in hypocotyls of double mutant seedlings is disrupted.
- CS24630 — arf7-1 arf19 double mutant; agravitropic response in both hypocotyls and roots; impaired phototropic response in hypocotyls; impaired lateral root formation; small plant size; small and epinastic rosette leaves; reduced auxin sensitivity
- arf7-201 — Seedlings grown in the dark on sirtinol show long hypocotyls but no apical hook, have primary roots and are resistant to IAA and 2,4-D. In the dark, hypocotyls but not roots are resistant to 2,4-D. There is no obvious difference between wt and mutants grown on 2,4-D in the light.
- arf7-201 arf19-101 — Dark grown seedlings on sirtinol have both long primary roots and long hypocotyls. More resistant to 2,4-D and IAA than single mutants in both light and dark. The ethylene resistant root phenotype of arf19-101 is enhanced by arf7-201.
- dwf4-101 nph4-103 — Gravitropic curvature similar to that of wildtype (Col) when dark-grown. Over time however, the curvature becomes intermediate between that of the nph4 single mutant and wildtype.
- dwf4-101 nph4-103 — In the presence of 1 microM brassinazole, an inhibitor of brassinolide biosynthesis, the mutant hypocotyls display the same gravitropic time course as that of wildtype.
- dwf4-101 nph4-103 — Leaves and cotyledons are only weakly epinastic.
- dwf4-101 nph4-103 — Mutant hypocotyls are more sensitive to IAA treatment (inhibition of growth) than those of wildtype.
- dwf4-101 nph4-103 — Similar phototropic response of etiolated hypocotyls compared to that of wildtype.
- msg1-1 — Hypocotyl growth resistant (but not root growth) to 2,4-D inhibition compared to wildtype.
- msg1-1 — Mature mutant plants are largely wildtype in phenotype apart for the morphology of the rosette leaves.
- msg1-1 — Root growth significantly reduced (about two-third of that of wildtype) when grown in white light.
- msg1-1 — Rosette leaves are somewhat epinatic albeit less so than those of msg1-2.
- msg1-1 — Slower gravitropic response than wildtype, although the final curvatures are comparable.
- msg1-2 — Dramatically reduced phototropic response.
- msg1-2 — Hypocotyl growth resistant (but not root growth) to 2,4-D inhibition compared to wildtype.
- msg1-2 — Mature mutant plants are largely wildtype in phenotype apart for the morphology of the rosette leaves.
- msg1-2 — Phenotype not described.
- msg1-2 — Root growth significantly reduced (about two-third of that of wildtype) when grown in white light.
- msg1-2 — Slower gravitropic response than wildtype, although the final curvatures are comparable.
- msg1-2 — Strongly epinastic rosette leaves.
- msg1-3 — About half of the rosette leaves are epinastic, the remaining half was hyponastic.
- msg1-3 — Gravitropic response of dark-grown mutant hypocotyls is slower than that of wildtype (Col).
- msg1-3 — Hypocotyl growth resistant (but not root growth) to 2,4-D inhibition compared to wildtype.
- msg1-3 — In the presence of 1 microM brassinazole, an inhibitor of brassinolide biosynthesis, the mutant hypocotyls display the same gravitropic time course as that of wildtype.
- msg1-3 — Mature mutant plants are largely wildtype in phenotype apart for the morphology of the rosette leaves.
- msg1-3 — Mutant hypocotyls are more resistant to IAA treatment (inhibition of growth) than wildtype.
- msg1-3 — Root growth significantly reduced (about two-third of that of wildtype) when grown in white light.
- msg1-3 — Slower gravitropic response than wildtype, although the final curvatures are comparable.
- msg1-3 — Slower phototropic response of etiolated hypocotyl compared to wildtype.
- msg1-3 — When grown on 2,4-D-containing medium, the hyponastic rosette leaves become flat.
- myb77-1/nph4-1 — Decreased density of lateral roots. Synergistic interaction.
- nph4-1 — Dramatically reduced phototropic response.
- nph4-1 — Mutant produces fewer lateral roots compared with the wild type.
- nph4-1 — When seedlings are grown vertically under dark conditions, the hypocotyl growth orientation of mutant is significantly skewed compared with the wild type.
- nph4-101 — Dramatically reduced phototropic response.
- nph4-104 — Dramatically reduced phototropic response.
- nph4-105 — Dramatically reduced phototropic response.
- nph4-106 — Dramatically reduced phototropic response.
- nph4-107 — Dramatically reduced phototropic response.
- nph4-109 — Phenotype not described.
- nph4-3 — Dramatically reduced phototropic response.
Function-related keywords:
Literature:
- Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. DOI: 10.1104/pp.120.2.605 ; PMID: 10364413
- Activation and repression of transcription by auxin-response factors. DOI: 10.1073/pnas.96.10.5844 ; PMID: 10318972
- The MSG1 and AXR1 genes of Arabidopsis are likely to act independently in growth-curvature responses of hypocotyls. DOI: 10.1007/s004250050493 ; PMID: 9951732
- Protein-protein interactions among the Aux/IAA proteins. DOI: 10.1073/pnas.94.22.11786 ; PMID: 9342315
- Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. DOI: 10.1105/tpc.9.5.745 ; PMID: 9165751
- Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. DOI: 10.1104/pp.112.1.291 ; PMID: 8819327
- Ethylene signaling: from mutants to molecules. DOI: 10.1016/s1369-5266(00)00096-0 ; PMID: 11019801
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. DOI: 10.1104/pp.126.2.826 ; PMID: 11402210
- Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. DOI: 10.1242/dev.00925 ; PMID: 14973283
- Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. DOI: 10.1105/tpc.104.028316 ; PMID: 15659631
- AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. DOI: 10.1105/tpc.105.031096 ; PMID: 15923351
- NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. DOI: 10.1111/j.1365-313X.2005.02432.x ; PMID: 15960621
- AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. DOI: 10.1242/dev.02012 ; PMID: 16176952
- Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. DOI: 10.1111/j.1365-313X.2005.02537.x ; PMID: 16236149
- A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. DOI: 10.1073/pnas.0507127103 ; PMID: 16371470
- The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. DOI: 10.1105/tpc.105.039172 ; PMID: 16489122
- A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. DOI: 10.1104/pp.105.070987 ; PMID: 16461383
- Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of arabidopsis expressed in HeLa cells. DOI: 10.1093/pcp/pcj080 ; PMID: 16854942
- PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. DOI: 10.1111/j.1365-313X.2006.02882.x ; PMID: 17010112
- ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. DOI: 10.1105/tpc.106.047761 ; PMID: 17259263
- The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. DOI: 10.1105/tpc.107.050963 ; PMID: 17675404
- NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. DOI: 10.1073/pnas.0708506104 ; PMID: 18000043
- Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2008.03528.x ; PMID: 18435826
- Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. DOI: 10.1093/pcp/pcn079 ; PMID: 18505759
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Mechanical induction of lateral root initiation in Arabidopsis thaliana. DOI: 10.1073/pnas.0807814105 ; PMID: 19033199
- Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. DOI: 10.1105/tpc.108.058719 ; PMID: 19106375
- Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. DOI: 10.1093/mp/ssm013 ; PMID: 20031920
- Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. DOI: 10.1038/sj.emboj.7600659 ; PMID: 15889151
- What's the physiological role of domain II-less Aux/IAA proteins? DOI: 10.4161/psb.3.7.5994 ; PMID: 19704497
- LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. DOI: 10.1104/pp.109.143685 ; PMID: 19717544
- Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. DOI: 10.1007/s11103-009-9589-4 ; PMID: 20043234
- Bimodular auxin response controls organogenesis in Arabidopsis. DOI: 10.1073/pnas.0915001107 ; PMID: 20133796
- RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2010.04199.x ; PMID: 20230485
- Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. DOI: 10.1093/molbev/msq204 ; PMID: 20736450
- Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. DOI: 10.1093/jxb/erp230 ; PMID: 19654206
- Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. DOI: 10.1073/pnas.1006740108 ; PMID: 21482761
- The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. DOI: 10.1242/dev.071928 ; PMID: 22278921
- A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. DOI: 10.1093/jxb/err424 ; PMID: 22238449
- LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. DOI: 10.1093/aob/mcs019 ; PMID: 22334497
- Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. DOI: 10.1073/pnas.1121134109 ; PMID: 22307611
- Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. DOI: 10.1007/s00425-012-1673-3 ; PMID: 22699776
- The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. DOI: 10.1016/j.jplph.2012.05.002 ; PMID: 22658222
- Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. DOI: 10.1093/mp/sss123 ; PMID: 23125315
- Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. DOI: 10.4161/psb.22979 ; PMID: 23299420
- The BIG gene is required for auxin-mediated organ growth in Arabidopsis. DOI: 10.1007/s00425-012-1834-4 ; PMID: 23288076
- Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. DOI: 10.1016/j.cub.2013.04.048 ; PMID: 23684976
- PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. DOI: 10.1105/tpc.113.112417 ; PMID: 23757399
- The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis. DOI: 10.1093/pcp/pct081 ; PMID: 23749813
- Glycerol affects root development through regulation of multiple pathways in Arabidopsis. DOI: 10.1371/journal.pone.0086269 ; PMID: 24465999
- A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. DOI: 10.1038/ncb2893 ; PMID: 24362628
- Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. DOI: 10.1073/pnas.1400074111 ; PMID: 24706860
- Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. DOI: 10.1016/j.jtbi.2014.11.003 ; PMID: 25446711
- Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. DOI: 10.3389/fpls.2014.00744 ; PMID: 25566309
- Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. DOI: 10.1104/pp.114.256313 ; PMID: 25810094
- Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. DOI: 10.1105/tpc.114.132993 ; PMID: 25944102
- ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. DOI: 10.1016/j.phytochem.2015.11.006 ; PMID: 26608667
- A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. DOI: 10.1038/ncomms9821 ; PMID: 26578065
- Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. DOI: 10.1242/dev.136283 ; PMID: 27578783
- The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems. DOI: 10.1080/15592324.2017.1307492 ; PMID: 28340328
- Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program? DOI: 10.3389/fpls.2017.00875 ; PMID: 28603536
- High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis. DOI: 10.1007/s00425-017-2747-z ; PMID: 28766014
- Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana. DOI: 10.1016/j.plantsci.2017.09.011 ; PMID: 28969797
- Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. DOI: 10.1104/pp.17.00713 ; PMID: 29084900
- Alternative polyadenylation is involved in auxin-based plant growth and development. DOI: 10.1111/tpj.13771 ; PMID: 29155478
- Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. DOI: 10.1126/scisignal.aan0316 ; PMID: 29184030
- WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. DOI: 10.1371/journal.pgen.1007177 ; PMID: 29377885
- Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis. DOI: 10.1093/pcp/pcy018 ; PMID: 29401292
- The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. DOI: 10.1016/j.cub.2018.01.050 ; PMID: 29478854
- LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. DOI: 10.1111/tpj.13945 ; PMID: 29681137
- JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. DOI: 10.1111/tpj.14002 ; PMID: 29923261
- The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots. DOI: 10.1104/pp.17.01713 ; PMID: 30026290
- Root Gravitropism Is Regulated by a Crosstalk between para-Aminobenzoic Acid, Ethylene, and Auxin. DOI: 10.1104/pp.18.00126 ; PMID: 30275058
- [Not Available]. DOI: NA ; PMID: 30484609
- LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. DOI: 10.1186/s12870-019-1659-4 ; PMID: 30704405
- Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. DOI: 10.1038/s41477-019-0378-z ; PMID: 30833711
- Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation. DOI: 10.1111/tpj.14456 ; PMID: 31306517
- Identification of Auxin Response Factor-Encoding Genes Expressed in Distinct Phases of Leaf Vein Development and with Overlapping Functions in Leaf Formation. DOI: 10.3390/plants8070242 ; PMID: 31340490
- LBD29-Involved Auxin Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis. DOI: 10.1104/pp.19.00148 ; PMID: 31377726
- Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis. DOI: 10.1111/nph.16115 ; PMID: 31403703
- AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. DOI: 10.1111/tpj.14511 ; PMID: 31444832
- Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. DOI: 10.1016/j.molcel.2019.06.044 ; PMID: 31421981
- Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. DOI: 10.1371/journal.pgen.1008465 ; PMID: 31626627
- PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. DOI: 10.1371/journal.pgen.1008044 ; PMID: 32032352
- Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana. DOI: 10.1111/nph.16599 ; PMID: 32278327
- The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. DOI: 10.1016/j.celrep.2020.107529 ; PMID: 32320660
- ABI3 mediated repression of RAV1 gene expression promotes efficient dehydration stress response in Arabidopsis thaliana. DOI: 10.1016/j.bbagrm.2020.194582 ; PMID: 32442719
- SAUR15 Promotes Lateral and Adventitious Root Development via Activating H(+)-ATPases and Auxin Biosynthesis. DOI: 10.1104/pp.19.01250 ; PMID: 32651188
- The Ubiquitin-Specific Protease TNI/UBP14 Functions in Ubiquitin Recycling and Affects Auxin Response. DOI: 10.1104/pp.20.00689 ; PMID: 32859753
- Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. DOI: 10.1016/j.celrep.2020.108060 ; PMID: 32846118
- A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis. DOI: 10.3389/fpls.2020.01239 ; PMID: 32903377
- The growth of Arabidopsis primary root is repressed by several and diverse amino acids through auxin-dependent and independent mechanisms and MPK6 kinase activity. DOI: 10.1016/j.plantsci.2020.110717 ; PMID: 33288023
- Coordination between MIDASIN 1-mediated ribosome biogenesis and auxin modulates plant development. DOI: 10.1093/jxb/erab025 ; PMID: 33476386
- PIP2, An Auxin Induced Plant Peptide Hormone Regulates Root and Hypocotyl Elongation in Arabidopsis. DOI: 10.3389/fpls.2021.646736 ; PMID: 34054893
- Diketopiperazine Modulates Arabidopsis thaliana Root System Architecture by Promoting Interactions of Auxin Receptor TIR1 and IAA7/17 Proteins. DOI: 10.1093/pcp/pcab142 ; PMID: 34534338
- Micrococcus luteus LS570 promotes root branching in Arabidopsis via decreasing apical dominance of the primary root and an enhanced auxin response. DOI: 10.1007/s00709-021-01724-z ; PMID: 34792622
- GIGANTEA regulates lateral root formation by modulating auxin signaling in Arabidopsis thaliana. DOI: 10.1080/15592324.2022.2096780 ; PMID: 35822517
- Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. DOI: 10.1038/s41467-022-31628-2 ; PMID: 35817767
- Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. DOI: 10.1093/plcell/koac218 ; PMID: 35922895
- Feedback regulation of auxin signaling through the transcription of H2A.Z and deposition of H2A.Z to SMALL AUXIN UP RNAs in Arabidopsis. DOI: 10.1111/nph.18440 ; PMID: 36017638
- Control of lateral root initiation by DA3 in Arabidopsis. DOI: 10.1016/j.celrep.2022.111913 ; PMID: 36640335
- MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. DOI: 10.1093/plphys/kiad129 ; PMID: 36852886
- Divergent regulation of auxin responsive genes in root-knot and cyst nematodes feeding sites formed in Arabidopsis. DOI: 10.3389/fpls.2023.1024815 ; PMID: 36875577
- The dynamics of H2A.Z on SMALL AUXIN UP RNAs regulate abscisic acid-auxin signaling crosstalk in Arabidopsis. DOI: 10.1093/jxb/erad131 ; PMID: 37022978
- TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana. DOI: 10.15252/embj.2022111273 ; PMID: 37021425
- ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. DOI: 10.1016/j.celrep.2023.112565 ; PMID: 37224012
- Activation and repression of transcription by auxin-response factors. DOI: 10.1073/pnas.96.10.5844 ; PMID: 10318972
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. DOI: 10.1093/molbev/msj051 ; PMID: 16280546
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. DOI: 10.1093/molbev/msj051 ; PMID: 16280546
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. DOI: 10.1093/molbev/msj051 ; PMID: 16280546
Sequences:
cDNA Sequence
- >AT5G20730.1
TTTAGCAGACCTTTTGGTAGTTGTCCTGGTCGCTGATCATCCCTTTCCGACAACTCTGTTGCTCTTTCTCTCACGTTTGAGTCTTAATCTTCGATTGTCCTTGGTCATCCTTAAGTTTTGTTTTTCTCTTTCGATTCATTTTCCAGATTTCTTTTTATAGAAACCCGTCTCTTTGATTTGATTCCCCCCAAGAAAGGAAAGCAAAACAAAGAAGAGCAGCTGAATCAAGTAACTTTGTGGGTGTTTTTGAATTATCTGACTCGAGATAAAGAGCTTCGTTAAAAACGGAATCTTTTTTAAGGTCGTATGCTTTGTTTGTCTCTCCGGAGATTCCGCGTGTGAAAAGTCGTGGTTTTTGATCTCTTTGAGATACTTAAAATTTCCGAGAAATTGGCGGCTCTGTCGGAGATAAAAAGCTGAGATCTTGGAGTTCCCCATTTCTGATTAACGATTCTCTCTGCTGTTACTTGAGCTAGGAAGCTATTAACAACTTGAGTGAAAGTTTAGGGCTTTTGATGAAGCTCTCACGCAAAGAGCTTAGCTTTGTATAAGCTCAGATTCAGATTATTTATTGGGTTTATTCTTCAGAGAAAGTAAAGTTGAGTGATCATGAAAGCTCCTTCATCAAATGGAGTTTCTCCTAATCCTGTTGAAGGAGAAAGGAGAAATATAAACTCAGAGCTATGGCACGCTTGTGCTGGGCCATTGATTTCGTTGCCTCCAGCAGGAAGTCTTGTTGTTTACTTCCCTCAAGGTCACAGTGAGCAAGTCGCGGCTTCAATGCAGAAGCAGACTGATTTCATACCAAGTTACCCGAATCTTCCTTCCAAGCTCATATGCATGCTCCACAATGTTACACTGAATGCTGATCCTGAGACGGATGAGGTCTATGCGCAGATGACTCTTCAGCCAGTAAACAAATATGACAGAGATGCATTGCTTGCTTCTGACATGGGTCTTAAGCTAAACAGACAACCTAATGAATTTTTCTGCAAAACCCTCACGGCGAGTGACACAAGTACTCACGGTGGATTTTCTGTACCCCGACGAGCTGCTGAGAAAATCTTTCCTGCTCTGGATTTCTCGATGCAACCACCTTGTCAGGAGCTTGTTGCTAAGGATATTCATGACAACACATGGACTTTCAGACATATTTATCGAGGTCAACCAAAAAGGCACTTGCTAACTACAGGCTGGAGTGTGTTTGTCAGCACGAAAAGGCTCTTTGCTGGAGACTCTGTTCTTTTTATAAGAGATGGAAAGGCGCAACTTCTGTTGGGGATAAGACGTGCAAATAGACAACAGCCTGCACTTTCTTCATCTGTAATATCAAGTGATAGCATGCACATCGGAGTTCTTGCAGCTGCAGCTCATGCTAATGCTAATAACAGTCCTTTCACCATTTTCTACAACCCGAGGTGGGCTGCTCCTGCTGAGTTTGTGGTTCCTTTAGCCAAGTATACCAAAGCGATGTACGCTCAAGTTTCCCTCGGTATGCGGTTTAGAATGATATTTGAGACTGAAGAATGTGGAGTTCGTCGGTATATGGGTACAGTTACCGGTATCAGTGATCTTGATCCAGTGAGATGGAAAAACTCTCAGTGGCGGAATCTTCAGATTGGATGGGATGAGTCAGCTGCTGGTGATAGGCCCAGTCGAGTTTCAGTTTGGGACATTGAACCGGTTTTAACTCCTTTCTACATATGTCCTCCTCCATTTTTCCGACCTCGCTTTTCTGGACAACCTGGAATGCCAGATGATGAGACTGACATGGAGTCTGCACTGAAGAGAGCAATGCCATGGCTTGATAATAGCTTAGAGATGAAAGACCCTTCGAGTACTATCTTTCCTGGTCTGAGTTTAGTTCAGTGGATGAATATGCAGCAGCAGAACGGCCAGCTACCCTCTGCTGCTGCACAGCCAGGTTTCTTCCCATCAATGCTTTCGCCAACCGCGGCGCTGCACAACAATCTTGGCGGCACTGATGATCCCTCCAAGTTACTGAGCTTTCAGACGCCGCACGGGGGGATTTCCTCCTCAAATCTCCAATTTAACAAACAGAATCAGCAAGCCCCAATGTCTCAGTTGCCTCAGCCACCAACTACGTTGTCCCAACAACAGCAGCTGCAGCAATTGTTGCACTCCTCTTTGAACCATCAACAACAGCAATCGCAGTCTCAACAACAGCAACAACAACAACAGTTGCTGCAGCAGCAACAACAATTGCAGTCTCAACAACACAGCAACAACAATCAATCGCAGTCTCAGCAACAACAACAATTGCTCCAGCAGCAACAACAACAACAACTGCAGCAACAACATCAACAACCGTTACAGCAACAGACTCAGCAGCAGCAGCTAAGAACACAGCCATTGCAATCTCACTCGCATCCACAGCCACAACAGTTACAACAACATAAGTTGCAGCAACTTCAGGTTCCACAGAATCAGCTTTACAATGGTCAACAAGCAGCGCAGCAGCATCAGTCGCAACAAGCATCTACACATCATTTGCAACCACAATTAGTTTCGGGATCAATGGCAAGCAGTGTCATCACGCCTCCGTCCAGCTCCCTTAATCAAAGCTTTCAACAGCAACAACAACAGTCTAAGCAACTTCAACAAGCACATCACCATTTAGGTGCTAGCACTAGCCAGAGTAGTGTAATTGAAACCAGCAAGTCTTCATCCAATCTGATGTCCGCACCGCCGCAAGAGACACAGTTTTCACGACAAGTAGAACAGCAGCAGCCTCCTGGTCTCAACGGGCAGAATCAGCAAACACTTTTGCAGCAGAAAGCTCACCAGGCACAGGCCCAACAGATATTCCAGCAGAGTCTCTTGGAACAGCCGCATATACAGTTTCAGCTGTTACAGAGATTACAACAGCAACAGCAGCAGCAATTTCTTTCGCCGCAGTCTCAGTTACCACACCATCAATTGCAAAGCCAGCAGTTGCAACAGCTGCCTACTCTCTCTCAAGGTCATCAGTTTCCGTCATCTTGCACTAACAATGGCTTATCGACGTTGCAACCACCTCAAATGCTGGTGAGCCGACCTCAGGAAAAACAAAACCCACCGGTTGGGGGAGGGGTCAAAGCTTATTCAGGCATCACAGATGGAGGAGATGCACCTTCCTCTTCAACGTCGCCTTCCACCAACAACTGTCAGATCTCTTCTTCAGGCTTTCTCAACAGAAGCCAAAGCGGGCCAGCGATCTTGATACCTGATGCAGCGATTGATATGTCTGGTAATCTTGTTCAGGATCTTTACAGCAAATCCGATATGCGGCTAAAACAAGAACTCGTGGGTCAGCAAAAGTCCAAAGCTAGTTTAACAGATCATCAACTAGAAGCATCTGCCTCTGGAACTTCTTACGGTTTAGATGGAGGCGAAAACAACAGACAACAAAATTTCTTGGCTCCAACTTTTGGCCTTGACGGTGATTCCAGGAACAGCTTGCTCGGTGGAGCTAATGTTGATAATGGCTTTGTGCCTGACACGCTACTCTCGAGGGGATATGACTCCCAGAAAGATCTTCAGAACATGCTTTCAAACTATGGAGGAGTGACAAATGACATTGGTACAGAGATGTCTACTTCAGCTGTAAGAACTCAATCTTTTGGTGTCCCCAATGTGCCCGCCATTTCGAACGATCTAGCTGTCAACGATGCTGGAGTTCTTGGTGGTGGATTGTGGCCAGCTCAGACTCAGCGAATGCGAACTTATACAAAGGTGCAAAAACGAGGCTCAGTGGGGAGATCAATAGACGTCAACCGTTACAGAGGTTACGATGAGCTGAGGCATGATCTAGCGCGCATGTTTGGGATCGAAGGACAGCTCGAAGATCCTCAAACATCTGACTGGAAACTTGTTTATGTCGATCATGAAAATGACATCCTCCTCGTCGGCGATGATCCATGGGAAGAATTCGTAAACTGTGTTCAGAGCATTAAGATCCTTTCATCAGCTGAGGTTCAGCAGATGAGCTTAGACGGGAACTTTGCCGGTGTACCAGTTACTAATCAAGCTTGTAGTGGCGGTGACAGTGGCAATGCTTGGAGAGGTCATTATGATGATAACTCAGCCACTTCGTTTAACCGGTGATGGCAGAAGAGTTCTCTCACAGACAAAGATTCTTTTTTCTTCGTTTTGTAATATAACTTCTCGTTGATAACATGTCTCAAGTTTCCACTGGGCACTGTAGAGCATTTACCTGTAAAATATCTTCCACTAAGTTTACACGGAGATTTTATTTGCTGTGAGTCACTGTTTCTACCAAGTTTAACTGATCAACTGAAACCGCTTGTAACCAAAAAGAGAAGGAAAAACATGAAATCA - >AT5G20730.2
TTTAGCAGACCTTTTGGTAGTTGTCCTGGTCGCTGATCATCCCTTTCCGACAACTCTGTTGCTCTTTCTCTCACGTTTGAGTCTTAATCTTCGATTGTCCTTGGTCATCCTTAAGTTTTGTTTTTCTCTTTCGATTCATTTTCCAGATTTCTTTTTATAGAAACCCGTCTCTTTGATTTGATTCCCCCCAAGAAAGGAAAGCAAAACAAAGAAGAGCAGCTGAATCAAGTAACTTTGTGGGTGTTTTTGAATTATCTGACTCGAGATAAAGAGCTTCGTTAAAAACGGAATCTTTTTTAAGGTCGTATGCTTTGTTTGTCTCTCCGGAGATTCCGCGTGTGAAAAGTCGTGGTTTTTGATCTCTTTGAGATACTTAAAATTTCCGAGAAATTGGCGGCTCTGTCGGAGATAAAAAGCTGAGATCTTGGAGTTCCCCATTTCTGATTAACGATTCTCTCTGCTGTTACTTGAGCTAGGAAGCTATTAACAACTTGAGTGAAAGTTTAGGGCTTTTGATGAAGCTCTCACGCAAAGAGCTTAGCTTTGTATAAGCTCAGATTCAGATTATTTATTGGGTTTATTCTTCAGAGAAAGTAAAGTTGAGTGATCATGAAAGCTCCTTCATCAAATGGAGTTTCTCCTAATCCTGTTGAAGGAGAAAGGAGAAATATAAACTCAGAGCTATGGCACGCTTGTGCTGGGCCATTGATTTCGTTGCCTCCAGCAGGAAGTCTTGTTGTTTACTTCCCTCAAGGTCACAGTGAGCAAGTCGCGGCTTCAATGCAGAAGCAGACTGATTTCATACCAAGTTACCCGAATCTTCCTTCCAAGCTCATATGCATGCTCCACAATGTTACACTGAATGCTGATCCTGAGACGGATGAGGTCTATGCGCAGATGACTCTTCAGCCAGTAAACAAATATGACAGAGATGCATTGCTTGCTTCTGACATGGGTCTTAAGCTAAACAGACAACCTAATGAATTTTTCTGCAAAACCCTCACGGCGAGTGACACAAGTACTCACGGTGGATTTTCTGTACCCCGACGAGCTGCTGAGAAAATCTTTCCTGCTCTGGATTTCTCGATGCAACCACCTTGTCAGGAGCTTGTTGCTAAGGATATTCATGACAACACATGGACTTTCAGACATATTTATCGAGGTCAACCAAAAAGGCACTTGCTAACTACAGGCTGGAGTGTGTTTGTCAGCACGAAAAGGCTCTTTGCTGGAGACTCTGTTCTTTTTATAAGAGATGGAAAGGCGCAACTTCTGTTGGGGATAAGACGTGCAAATAGACAACAGCCTGCACTTTCTTCATCTGTAATATCAAGTGATAGCATGCACATCGGAGTTCTTGCAGCTGCAGCTCATGCTAATGCTAATAACAGTCCTTTCACCATTTTCTACAACCCGAGGTGGGCTGCTCCTGCTGAGTTTGTGGTTCCTTTAGCCAAGTATACCAAAGCGATGTACGCTCAAGTTTCCCTCGGTATGCGGTTTAGAATGATATTTGAGACTGAAGAATGTGGAGTTCGTCGGTATATGGGTACAGTTACCGGTATCAGTGATCTTGATCCAGTGAGATGGAAAAACTCTCAGTGGCGGAATCTTCAGATTGGATGGGATGAGTCAGCTGCTGGTGATAGGCCCAGTCGAGTTTCAGTTTGGGACATTGAACCGGTTTTAACTCCTTTCTACATATGTCCTCCTCCATTTTTCCGACCTCGCTTTTCTGGACAACCTGGAATGCCAGATGATGAGACTGACATGGAGTCTGCACTGAAGAGAGCAATGCCATGGCTTGATAATAGCTTAGAGATGAAAGACCCTTCGAGTACTATCTTTCCTGGTCTGAGTTTAGTTCAGTGGATGAATATGCAGCAGCAGAACGGCCAGCTACCCTCTGCTGCTGCACAGCCAGGTTTCTTCCCATCAATGCTTTCGCCAACCGCGGCGCTGCACAACAATCTTGGCGGCACTGATGATCCCTCCAAGTTACTGAGCTTTCAGACGCCGCACGGGGGGATTTCCTCCTCAAATCTCCAATTTAACAAACAGAATCAGCAAGCCCCAATGTCTCAGTTGCCTCAGCCACCAACTACGTTGTCCCAACAACAGCAGCTGCAGCAATTGTTGCACTCCTCTTTGAACCATCAACAACAGCAATCGCAGTCTCAACAACAGCAACAACAACAACAGTTGCTGCAGCAGCAACAACAATTGCAGTCTCAACAACACAGCAACAACAATCAATCGCAGTCTCAGCAACAACAACAATTGCTCCAGCAGCAACAACAACAACAACTGCAGCAACAACATCAACAACCGTTACAGCAACAGACTCAGCAGCAGCAGCTAAGAACACAGCCATTGCAATCTCACTCGCATCCACAGCCACAACAGTTACAACAACATAAGTTGCAGCAACTTCAGGTTCCACAGAATCAGCTTTACAATGGTCAACAAGCAGCGCAGCAGCATCAGTCGCAACAAGCATCTACACATCATTTGCAACCACAATTAGTTTCGGGATCAATGGCAAGCAGTGTCATCACGCCTCCGTCCAGCTCCCTTAATCAAAGCTTTCAACAGCAACAACAACAGTCTAAGCAACTTCAACAAGCACATCACCATTTAGGTGCTAGCACTAGCCAGAGTAGTGTAATTGAAACCAGCAAGTCTTCATCCAATCTGATGTCCGCACCGCCGCAAGAGACACAGTTTTCACGACAAGTAGAACAGCAGCAGCCTCCTGGTCTCAACGGGCAGAATCAGCAAACACTTTTGCAGCAGAAAGCTCACCAGGCACAGGCCCAACAGATATTCCAGCAGAGTCTCTTGGAACAGCCGCATATACAGTTTCAGCTGTTACAGAGATTACAACAGCAACAGCAGCAGCAATTTCTTTCGCCGCAGTCTCAGTTACCACACCATCAATTGCAAAGCCAGCAGTTGCAACAGCTGCCTACTCTCTCTCAAGGTCATCAGTTTCCGTCATCTTGCACTAACAATGGCTTATCGACGTTGCAACCACCTCAAATGCTGGTGAGCCGACCTCAGGAAAAACAAAACCCACCGGTTGGGGGAGGGGTCAAAGCTTATTCAGGCATCACAGATGGAGGAGATGCACCTTCCTCTTCAACGTCGCCTTCCACCAACAACTGTCAGATCTCTTCTTCAGGCTTTCTCAACAGAAGCCAAAGCGGGCCAGCGATCTTGATACCTGATGCAGCGATTGATATGTCTGGTAATCTTGTTCAGGATCTTTACAGCAAATCCGATATGCGGCTAAAACAAGAACTCGTGGGTCAGCAAAAGTCCAAAGCTAGTTTAACAGATCATCAACTAGAAGCATCTGCCTCTGGAACTTCTTACGGTTTAGATGGAGGCGAAAACAACAGACAACAAAATTTCTTGGCTCCAACTTTTGGCCTTGACGGTGATTCCAGGAACAGCTTGCTCGGTGGAGCTAATGTTGATAATGGCTTTGTGCCTGACACGCTACTCTCGAGGGGATATGACTCCCAGAAAGATCTTCAGAACATGCTTTCAAACTATGGAGGAGTGACAAATGACATTGGTACAGAGATGTCTACTTCAGCTGTAAGAACTCAATCTTTTGGTGTCCCCAATGTGCCCGCCATTTCGAACGATCTAGCTGTCAACGATGCTGGAGTTCTTGGTGGTGGATTGTGGCCAGCTCAGACTCAGCGAATGCGAACTTATACAAAGGTGCAAAAACGAGGCTCAGTGGGGAGATCAATAGACGTCAACCGTTACAGAGGTTACGATGAGCTGAGGCATGATCTAGCGCGCATGTTTGGGATCGAAGGACAGCTCGAAGATCCTCAAACATCTGACTGGAAACTTGTTTATGTCGATCATGAAAATGACATCCTCCTCGTCGGCGATGATCCATGGGAAGAATTCGTAAACTGTGTTCAGAGCATTAAGATCCTTTCATCAGCTGAGGTTCAGCAGATGAGCTTAGACGGGAACTTTGCCGGTGTACCAGTTACTAATCAAGCTTGTAGTGGCGGTGACAGTGGCAATGCTTGGAGAGGTCATTATGATGATAACTCAGCCACTTCGTTTAACCGGTGATGGCAGAAGAGTTCTCTCACAGACAAAGATTCTTTTTTCTTCGTTTTGTAATATAACTTCTCGTTGATAACATGTCTCAAGTTTCCACTGGGCACTGTAGAGCATTTACCTGTAAAATATCTTCCACTAAGTTTACACGGAGATTTTATTTGCTGTGAGTCACTGTTTCTACCAAGTTTAACTGATCAACTGAAACCGCTTGTAACCAAAAAGAGAAGGAAAAACATGAAATCA - >AT5G20730.3
TTTAGCAGACCTTTTGGTAGTTGTCCTGGTCGCTGATCATCCCTTTCCGACAACTCTGTTGCTCTTTCTCTCACGTTTGAGTCTTAATCTTCGATTGTCCTTGGTCATCCTTAAGTTTTGTTTTTCTCTTTCGATTCATTTTCCAGATTTCTTTTTATAGAAACCCGTCTCTTTGATTTGATTCCCCCCAAGAAAGGAAAGCAAAACAAAGAAGAGCAGCTGAATCAAGTAACTTTGTGGGTGTTTTTGAATTATCTGACTCGAGATAAAGAGCTTCGTTAAAAACGGAATCTTTTTTAAGGTCGTATGCTTTGTTTGTCTCTCCGGAGATTCCGCGTGTGAAAAGTCGTGGTTTTTGATCTCTTTGAGATACTTAAAATTTCCGAGAAATTGGCGGCTCTGTCGGAGATAAAAAGCTGAGATCTTGGAGTTCCCCATTTCTGATTAACGATTCTCTCTGCTGTTACTTGAGCTAGGAAGCTATTAACAACTTGAGTGAAAGTTTAGGGCTTTTGATGAAGCTCTCACGCAAAGAGCTTAGCTTTGTATAAGCTCAGATTCAGATTATTTATTGGGTTTATTCTTCAGAGAAAGTAAAGTTGAGTGATCATGAAAGCTCCTTCATCAAATGGAGTTTCTCCTAATCCTGTTGAAGGAGAAAGGAGAAATATAAACTCAGAGCTATGGCACGCTTGTGCTGGGCCATTGATTTCGTTGCCTCCAGCAGGAAGTCTTGTTGTTTACTTCCCTCAAGGTCACAGTGAGCAAGTCGCGGCTTCAATGCAGAAGCAGACTGATTTCATACCAAGTTACCCGAATCTTCCTTCCAAGCTCATATGCATGCTCCACAATGTTACACTGAATGCTGATCCTGAGACGGATGAGGTCTATGCGCAGATGACTCTTCAGCCAGTAAACAAATATGACAGAGATGCATTGCTTGCTTCTGACATGGGTCTTAAGCTAAACAGACAACCTAATGAATTTTTCTGCAAAACCCTCACGGCGAGTGACACAAGTACTCACGGTGGATTTTCTGTACCCCGACGAGCTGCTGAGAAAATCTTTCCTGCTCTGGATTTCTCGATGCAACCACCTTGTCAGGAGCTTGTTGCTAAGGATATTCATGACAACACATGGACTTTCAGACATATTTATCGAGGTCAACCAAAAAGGCACTTGCTAACTACAGGCTGGAGTGTGTTTGTCAGCACGAAAAGGCTCTTTGCTGGAGACTCTGTTCTTTTTATAAGAGATGGAAAGGCGCAACTTCTGTTGGGGATAAGACGTGCAAATAGACAACAGCCTGCACTTTCTTCATCTGTAATATCAAGTGATAGCATGCACATCGGAGTTCTTGCAGCTGCAGCTCATGCTAATGCTAATAACAGTCCTTTCACCATTTTCTACAACCCGAGGTGGGCTGCTCCTGCTGAGTTTGTGGTTCCTTTAGCCAAGTATACCAAAGCGATGTACGCTCAAGTTTCCCTCGGTATGCGGTTTAGAATGATATTTGAGACTGAAGAATGTGGAGTTCGTCGGTATATGGGTACAGTTACCGGTATCAGTGATCTTGATCCAGTGAGATGGAAAAACTCTCAGTGGCGGAATCTTCAGATTGGATGGGATGAGTCAGCTGCTGGTGATAGGCCCAGTCGAGTTTCAGTTTGGGACATTGAACCGGTTTTAACTCCTTTCTACATATGTCCTCCTCCATTTTTCCGACCTCGCTTTTCTGGACAACCTGGAATGCCAGATGATGAGACTGACATGGAGTCTGCACTGAAGAGAGCAATGCCATGGCTTGATAATAGCTTAGAGATGAAAGACCCTTCGAGTACTATCTTTCCTGGTCTGAGTTTAGTTCAGTGGATGAATATGCAGCAGCAGAACGGCCAGCTACCCTCTGCTGCTGCACAGCCAGGTTTCTTCCCATCAATGCTTTCGCCAACCGCGGCGCTGCACAACAATCTTGGCGGCACTGATGATCCCTCCAAGTTACTGAGCTTTCAGACGCCGCACGGGGGGATTTCCTCCTCAAATCTCCAATTTAACAAACAGAATCAGCAAGCCCCAATGTCTCAGTTGCCTCAGCCACCAACTACGTTGTCCCAACAACAGCAGCTGCAGCAATTGTTGCACTCCTCTTTGAACCATCAACAACAGCAATCGCAGTCTCAACAACAGCAACAACAACAACAGTTGCTGCAGCAGCAACAACAATTGCAGTCTCAACAACACAGCAACAACAATCAATCGCAGTCTCAGCAACAACAACAATTGCTCCAGCAGCAACAACAACAACAACTGCAGCAACAACATCAACAACCGTTACAGCAACAGACTCAGCAGCAGCAGCTAAGAACACAGCCATTGCAATCTCACTCGCATCCACAGCCACAACAGTTACAACAACATAAGTTGCAGCAACTTCAGGTTCCACAGAATCAGCTTTACAATGGTCAACAAGCAGCGCAGCAGCATCAGTCGCAACAAGCATCTACACATCATTTGCAACCACAATTAGTTTCGGGATCAATGGCAAGCAGTGTCATCACGCCTCCGTCCAGCTCCCTTAATCAAAGCTTTCAACAGCAACAACAACAGTCTAAGCAACTTCAACAAGCACATCACCATTTAGGTGCTAGCACTAGCCAGAGTAGTGTAATTGAAACCAGCAAGTCTTCATCCAATCTGATGTCCGCACCGCCGCAAGAGACACAGTTTTCACGACAAGTAGAACAGCAGCAGCCTCCTGGTCTCAACGGGCAGAATCAGCAAACACTTTTGCAGCAGAAAGCTCACCAGGCACAGGCCCAACAGATATTCCAGCAGAGTCTCTTGGAACAGCCGCATATACAGTTTCAGCTGTTACAGAGATTACAACAGCAACAGCAGCAGCAATTTCTTTCGCCGCAGTCTCAGTTACCACACCATCAATTGCAAAGCCAGCAGTTGCAACAGCTGCCTACTCTCTCTCAAGGTCATCAGTTTCCGTCATCTTGCACTAACAATGGCTTATCGACGTTGCAACCACCTCAAATGCTGGTGAGCCGACCTCAGGAAAAACAAAACCCACCGGTTGGGGGAGGGGTCAAAGCTTATTCAGGCATCACAGATGGAGGAGATGCACCTTCCTCTTCAACGTCGCCTTCCACCAACAACTGTCAGATCTCTTCTTCAGGCTTTCTCAACAGAAGCCAAAGCGGGCCAGCGATCTTGATACCTGATGCAGCGATTGATATGTCTGGTAATCTTGTTCAGGATCTTTACAGCAAATCCGATATGCGGCTAAAACAAGAACTCGTGGGTCAGCAAAAGTCCAAAGCTAGTTTAACAGATCATCAACTAGAAGCATCTGCCTCTGGAACTTCTTACGGTTTAGATGGAGGCGAAAACAACAGACAACAAAATTTCTTGGCTCCAACTTTTGGCCTTGACGGTGATTCCAGGAACAGCTTGCTCGGTGGAGCTAATGTTGATAATGGCTTTGTGCCTGACACGCTACTCTCGAGGGGATATGACTCCCAGAAAGATCTTCAGAACATGCTTTCAAACTATGGAGGAGTGACAAATGACATTGGTACAGAGATGTCTACTTCAGCTGTAAGAACTCAATCTTTTGGTGTCCCCAATGTGCCCGCCATTTCGAACGATCTAGCTGTCAACGATGCTGGAGTTCTTGGTGGTGGATTGTGGCCAGCTCAGACTCAGCGAATGCGAACTTATACAAAGGTGCAAAAACGAGGCTCAGTGGGGAGATCAATAGACGTCAACCGTTACAGAGGTTACGATGAGCTGAGGCATGATCTAGCGCGCATGTTTGGGATCGAAGGACAGCTCGAAGATCCTCAAACATCTGACTGGAAACTTGTTTATGTCGATCATGAAAATGACATCCTCCTCGTCGGCGATGATCCATGGGAAGAATTCGTAAACTGTGTTCAGAGCATTAAGATCCTTTCATCAGCTGAGGTTCAGCAGATGAGCTTAGACGGGAACTTTGCCGGTGTACCAGTTACTAATCAAGCTTGTAGTGGCGGTGACAGTGGCAATGCTTGGAGAGGTCATTATGATGATAACTCAGCCACTTCGTTTAACCGGTGATGGCAGAAGAGTTCTCTCACAGACAAAGATTCTTTTTTCTTCGTTTTGTAATATAACTTCTCGTTGATAACATGTCTCAAGTTTCCACTGGGCACTGTAGAGCATTTACCTGTAAAATATCTTCCACTAAGTTTACACGGAGATTTTATTTGCTGTGAGTCACTGTTTCTACCAAGTTTAACTGATCAACTGAAACCGCTTGTAACCAAAAAGAGAAGGAAAAACATGAAATCA
CDS Sequence
Protein Sequence