Gene Details:

  • Gene ID: AT5G19530
  • Gene Symbol: ACL5
  • Gene Name: ACAULIS 5
  • Description: S-adenosyl-L-methionine-dependent methyltransferases superfamily protein;(source:Araport11)
  • TAIR Accession: locus:2180816
  • Genome: Araport11_genome_release
  • Species: Arabidopsis thaliana

Transcripts:

Plant Ontology Annotations:

  • PO:0009005  — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
  • PO:0025275  — procambium — procambio (Spanish, exact), 前形成層 (Japanese, exact)

Gene Ontology:

  • GO:0006596  — involved in — polyamine biosynthetic process
  • GO:0010487  — enables — thermospermine synthase activity
  • GO:0010087  — acts upstream of or within — phloem or xylem histogenesis
  • GO:0005634  — located in — nucleus
  • GO:0016768  — enables — spermine synthase activity
  • GO:0005737  — located in — cytoplasm
  • GO:0048759  — acts upstream of or within — xylem vessel member cell differentiation
  • GO:0009926  — acts upstream of or within — auxin polar transport
  • GO:0009826  — acts upstream of or within — unidimensional cell growth

Germplasm Phenotype:

  • acl5  — Reduced cell expansion
  • acl5-1  — Negative effects of the mutation on cell elongation are also detectable in pedicels, siliques and petioles of rosette leaves after transition to reproductive growth.
  • acl5-1  — The cortical microtubules of epidermal cells in the mutant internodes tend to form a more longitudinal array than those in the wild-type internodes.
  • acl5-1  — The mutant initiates vegetative growth and the transition to the inflorescence meristem in the same manner as the wild-type, but produces extremely short flowering stems. This phenotype is primarily due to a reduced cell length in the internodes.
  • acl5-1/sac52-d  — Double mutant shows increase in growth of 68% relative to acl5-1 single mutant. Also restores normal liginification.
  • acl5-3  — Same phenotype as acl5-1.
  • acl5-4  — Same phenotype as acl5-1.
  • tkv  — Increased thickness of major veins in juvenile and adult rosette leaves. Adult rosette leaves are smaller and have more veins per square area than those of wild type. Increased vein thickness is attributable to an increased number of both xylem and phloem cells as well as an increased number of procambial cells in between. Polar auxin transport in mutant stems is 66.2% of that in wild type. Mutants are fully fertile and produce normal flowers.

Literature:

Sequences:

cDNA Sequence
  • >AT5G19530.2
    AAAATGCCAAAATATAAGCATGCGACGGAATTTTGGCAGAAGATTGTAGAGTTGTAATCTGTCGCAATCATTACTCATGCTAGCATTTTTCATTTTCCCTTCATTTGTGGATAACGCACGATATAACATTCTACACACCAACAAGATTCTATAAAAACGCAAAGCCGTAGAGGTCATGTTCGGAAATGGGTTCCCGGAGATTCACAAAGCCACATCACCCACTCAAACCCTCCACTCTAACCAGCAAGACTGCCATTGGTATGAAGAAACCATCGATGATGATCTCAAGTGGTCTTTTGCCCTCAACAGTGTTCTCCATCAAGGAACTAGTGAGTACCAAGATATTGCTCTGTTGGACACCAAACGTTTTGGAAAGGTGCTTGTGATTGATGGGAAAATGCAAAGTGCTGAGAGAGATGAGTTTATCTACCATGAATGTTTGATCCATCCCGCTCTCCTTTTCCATCCCAACCCCAAGACTGTGTTTATAATGGGAGGAGGTGAAGGCTCTGCTGCAAGAGAAATACTAAAACACACGACGATCGAGAAAGTTGTTATGTGTGATATTGATCAGGAAGTTGTTGATTTTTGCAGAAGATTTCTGACCGTTAACAGCGATGCTTTCTGTAACAAAAAGCTTGAACTTGTGATCAAAGATGCAAAGGCTGAATTAGAGAAAAGGGAAGAGAAGTTTGATATCATAGTGGGAGATTTAGCTGATCCAGTGGAAGGTGGACCTTGTTATCAGCTCTACACCAAATCCTTCTACCAAAACATTCTCAAACCCAAGCTTAGCCCTAATGGCATTTTTGTCACCCAGGCTGGACCAGCAGGAATATTCACTCATAAGGAAGTCTTCACATCAATCTACAACACCATGAAGCAAGTCTTCAAGTACGTGAAGGCTTACACAGCACATGTGCCATCATTTGCGGACACATGGGGATGGGTGATGGCATCGGACCACGAGTTTGACGTTGAAGTTGATGAAATGGATCGAAGAATCGAAGAGAGAGTTAACGGAGAATTGATGTATCTAAACGCTCCTTCTTTCGTCTCTGCTGCTACTCTCAACAAAACCATCTCTCTCGCGCTAGAGAAGGAGACTGAAGTTTATAGTGAAGAGAATGCGAGATTCATTCATGGTCATGGTGTGGCGTACCGGCATATTTAAAGACGAACCGGTTTCAGTTTCAGTGTTATTACCAAACCCATGTCACAAAAACAAAAGGCCGGTTTCTTTTCTCCGCACAGAACCGGGTGTTGTCTTGAATCTTGATTACTTTGGTTCGGTTTTATTTTCTACATTGCTTTTTGTTTTCTTGTTCTTCCCTCAAGTTATTCCGGTTTAACAAGACTATATTGCTTACTAAGAAAGACCGATCTTCAATT
  • >AT5G19530.1
    AAAATGCCAAAATATAAGCATGCGACGGAATTTTGGCAGAAGATTGTAGAGTTGTAATCTGTCGCAATCATTACTCATGCTAGCATTTTTCATTTTCCCTTCATTTGTGGATAACGCACGATATAACATTCTACACACCAACAAGATTCTATAAAAACGCAAAGCCGTAGAGGTCATGTTCGGAAATGGGTTCCCGGAGATTCACAAAGCCACATCACCCACTCAAACCCTCCACTCTAACCAGCAAGACTGCCATTGGTATGAAGAAACCATCGATGATGATCTCAAGTGGTCTTTTGCCCTCAACAGTGTTCTCCATCAAGGAACTAGTGAGTACCAAGATATTGCTCTGTTGGACACCAAACGTTTTGGAAAGGTGCTTGTGATTGATGGGAAAATGCAAAGTGCTGAGAGAGATGAGTTTATCTACCATGAATGTTTGATCCATCCCGCTCTCCTTTTCCATCCCAACCCCAAGACTGTGTTTATAATGGGAGGAGGTGAAGGCTCTGCTGCAAGAGAAATACTAAAACACACGACGATCGAGAAAGTTGTTATGTGTGATATTGATCAGGAAGTTGTTGATTTTTGCAGAAGATTTCTGACCGTTAACAGCGATGCTTTCTGTAACAAAAAGCTTGAACTTGTGATCAAAGATGCAAAGGCTGAATTAGAGAAAAGGGAAGAGAAGTTTGATATCATAGTGGGAGATTTAGCTGATCCAGTGGAAGGTGGACCTTGTTATCAGCTCTACACCAAATCCTTCTACCAAAACATTCTCAAACCCAAGCTTAGCCCTAATGGCATTTTTGTCACCCAGGCTGGACCAGCAGGAATATTCACTCATAAGGAAGTCTTCACATCAATCTACAACACCATGAAGCAAGTCTTCAAGTACGTGAAGGCTTACACAGCACATGTGCCATCATTTGCGGACACATGGGGATGGGTGATGGCATCGGACCACGAGTTTGACGTTGAAGTTGATGAAATGGATCGAAGAATCGAAGAGAGAGTTAACGGAGAATTGATGTATCTAAACGCTCCTTCTTTCGTCTCTGCTGCTACTCTCAACAAAACCATCTCTCTCGCGCTAGAGAAGGAGACTGAAGTTTATAGTGAAGAGAATGCGAGATTCATTCATGGTCATGGTGTGGCGTACCGGCATATTTAAAGACGAACCGGTTTCAGTTTCAGTGTTATTACCAAACCCATGTCACAAAAACAAAAGGCCGGTTTCTTTTCTCCGCACAGAACCGGGTGTTGTCTTGAATCTTGATTACTTTGGTTCGGTTTTATTTTCTACATTGCTTTTTGTTTTCTTGTTCTTCCCTCAAGTTATTCCGGTTTAACAAGACTATATTGCTTACTAAGAAAGACCGATCTTCAATT
CDS Sequence
Protein Sequence