Gene Details:
- Gene ID: AT5G17520
- Gene Symbol: MEX1, RCP1
- Gene Name: MALTOSE EXCESS 1, ROOT CAP 1
- Description: root cap 1 (RCP1);(source:Araport11)
- TAIR Accession: locus:2157492
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
Gene Ontology:
- GO:0000023 — acts upstream of or within — maltose metabolic process
- GO:0009706 — located in — chloroplast inner membrane
- GO:0005983 — acts upstream of or within — starch catabolic process
- GO:0005363 — enables — maltose transmembrane transporter activity
- GO:0009624 — acts upstream of or within — response to nematode
- GO:0009941 — located in — chloroplast envelope
- GO:0007275 — acts upstream of or within — multicellular organism development
- GO:0005975 — acts upstream of or within — carbohydrate metabolic process
- GO:0009507 — located in — chloroplast
- GO:0009629 — acts upstream of or within — response to gravity
- GO:0009941 — is active in — chloroplast envelope
- GO:0007154 — acts upstream of or within — cell communication
- GO:0009536 — located in — plastid
Germplasm Phenotype:
- CS2105661 — Pale, maltose excess
- mex1-1 — mex1-1 plants are smaller than wild type plants and have severely reduced chlorophyll levels. Maltose levels in the mutants are 40 times above levels found in wild type seedlings. Starch levels are higher in the mutant plants, and they have reduced rates of starch degradation and biosynthesis despite the similar levels of starch metabolic enzyme activity measured in the mutant plants.
- mex1-2 — Maltose levels are reported to be at least 40 times higher in mex1-2 mutants than in wild type plants.
Function-related keywords:
- root , vascular leaf , root
Literature:
- Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. DOI: 10.1074/mcp.M300030-MCP200 ; PMID: 12766230
- Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. DOI: 10.1074/jbc.M308435200 ; PMID: 14576160
- Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. DOI: 10.1104/pp.104.044347 ; PMID: 15347792
- Starch degradation. DOI: 10.1146/annurev.arplant.56.032604.144257 ; PMID: 15862090
- Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. DOI: 10.1016/j.jplph.2004.08.012 ; PMID: 16146321
- RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. DOI: 10.1111/j.1365-313X.2005.02565.x ; PMID: 16297066
- Cellular and organ level localization of maltose in maltose-excess Arabidopsis mutants. DOI: 10.1007/s00425-006-0263-7 ; PMID: 16596410
- Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters. DOI: 10.1111/j.1365-3040.2006.01543.x ; PMID: 16913860
- Regulation of starch metabolism in Arabidopsis leaves. DOI: 10.1104/pp.104.900209 ; PMID: 17151136
- Host origin of plastid solute transporters in the first photosynthetic eukaryotes. DOI: 10.1186/gb-2007-8-10-r212 ; PMID: 17919328
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. DOI: 10.1104/pp.108.126979 ; PMID: 18805951
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. DOI: 10.1111/j.1365-313X.2009.03793.x ; PMID: 19154206
- Diversity and activity of sugar transporters in nematode-induced root syncytia. DOI: 10.1093/jxb/erp138 ; PMID: 19487386
- The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. DOI: 10.1104/pp.109.144931 ; PMID: 19776162
- Mutations in leaf starch metabolism modulate the diurnal root growth profiles of Arabidopsis thaliana. DOI: 10.4161/psb.6.7.15484 ; PMID: 21691153
- Starch metabolism in Arabidopsis. DOI: 10.1199/tab.0160 ; PMID: 23393426
- Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism. DOI: 10.1104/pp.113.227843 ; PMID: 24302650
- Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana. DOI: 10.3390/plants3010027 ; PMID: 27135490
- Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. DOI: 10.1371/journal.pone.0171245 ; PMID: 28152100
- Identification of Chloroplast Envelope Proteins with Critical Importance for Cold Acclimation. DOI: 10.1104/pp.19.00947 ; PMID: 31932409
- Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. DOI: 10.1074/mcp.M300030-MCP200 ; PMID: 12766230
Sequences:
cDNA Sequence
- >AT5G17520.2
CAAAATCTAGGATCAATACAAAAGAGCACATGATCATTGCTACAATTAACGATAATACCAACCGTCCACGTGCATCTCTTTCCCGGCCCAAGAACACTCTCACTTACATGATTTCACTGATGTACCCTTCTTCTTCCTCCTCTCTGTTCCAAACCCAAGTACTACAATAATTCTCTCACATTCCCATGGAAGGTAAAGCCATCGCGACGTCTCTCGGTGGTGATCGTGTATTGATATTCCCGTGTTCTCCTCGCTCTTCCTTCGTTTTTACATCCCGGCTCTCTAGCCTGCCTCTAAAGCGTGCGTCTATCGGTGGTGCTGTCTCTTGTTCCGGCGTCAATGGCTTGACTCGGTGGAATTCCATTGTTTCGACTCGCCGACTCGTTCCTGTTCGTTCAATTAACTCGGAATCGGACTCGGACTCCGACTTCCCTCACGAGAATCAGCAGGTGCGGTTTGAATTTCTGAGCATATGAATTCTAAAATCAAACGCTCAATTTTGTTAATTTTTGGTTGGTGGATGTTTTTTATTTTGGGTTTTTTCTCAAAGGGAAATCCAGGTTTGGGGAAATTTAAGGAATACCAAGAATGGGACTCATGGACGGCCAAGTTCTCCGGTGGAGCAAACATTCCGTTTCTCATGCTCCAATTGCCTCAGATCATCCTCAATACCCAGAATCTTTTGGCGGGAAACAATACCGCTCTTTCGGCTGTCCCATGGCTGGGAATGTTGACTGGTTTGTTAGGAAACCTTTCGTTGCTTTCTTATTTTGCTAAGAAGAGAGAAAAAGAAGCAGCTGTGGTGCAAACACTGGGAGTGGTCTCTACTCACATTGTGCTTGCACAGCTCACAATGGCTGAAGCAATGCCTATTCAGTATTTTGTTGCTACTTCAGCTGTTGTCACCATCGGTCTCATTGTGAACTGTTTGTACTATTTCGGTAAGCTTAGCAAAACTGTGTGGCAACTGTGGGAAGACGTTATCACTATTGGTGGACTCTCCGTTCTTCCTCAAATCATGTGGTCAACATTTGTCCCTCTTGTACCAAACAGTATCTTGCCTGGGACAACTGCTTTTGGTATTGCTGTGGCAGCTATAATCATGGCTCGAACTGGGAAACTTTCAGAGAAAGGTGTTAGGTTTGTAGGGTCTTTATCTGGATGGACAGCAACTCTTATGTTCATGTGGATGCCAGTTTCCCAAATGTGGACAAATTTTCTAAACCCGGACAACATAAAAGGCTTATCGTCAATCACAATGTTGCTCTCGATGATGGGAAACGGGCTTATGATCCCTCGAGCACTATTTATCCGTGATTTGATGTGGCTCACTGGTTCGCTATGGGCAACTCTCTTTTATGGATATGGAAATATTCTTTGCTTATACCTGGTAAATTGCACCAGCCAGTCATTCTTCGTGGCAGCTACAATTGGTTTGATCTCATGGATAGGACTGGCTTTGTGGAGAGATGCAGTGGCTTATGGTCACAACTCGCCGTTTAGATCTTTGAAAGAACTTGTTTTTGGACCGTAATGAATGAATGTACACGCCATAAACGCCCTTTGTTCAAGCAAGTCCATAGAGATTACATGTATTTTCATTCTTTTTTCCTAAGGGTTATAAGACAACTACTCTGTAATTTCATGTATTTTTTTACTTGAATCATATAGTAAAATAATGTCTGATATCAAAAATAACTTTTGATATTGAACGGTCAAAAATCAAAATCGAAACATTCTCGGTTCA - >AT5G17520.1
CAAAATCTAGGATCAATACAAAAGAGCACATGATCATTGCTACAATTAACGATAATACCAACCGTCCACGTGCATCTCTTTCCCGGCCCAAGAACACTCTCACTTACATGATTTCACTGATGTACCCTTCTTCTTCCTCCTCTCTGTTCCAAACCCAAGTACTACAATAATTCTCTCACATTCCCATGGAAGGTAAAGCCATCGCGACGTCTCTCGGTGGTGATCGTGTATTGATATTCCCGTGTTCTCCTCGCTCTTCCTTCGTTTTTACATCCCGGCTCTCTAGCCTGCCTCTAAAGCGTGCGTCTATCGGTGGTGCTGTCTCTTGTTCCGGCGTCAATGGCTTGACTCGGTGGAATTCCATTGTTTCGACTCGCCGACTCGTTCCTGTTCGTTCAATTAACTCGGAATCGGACTCGGACTCCGACTTCCCTCACGAGAATCAGCAGGTGCGGTTTGAATTTCTGAGCATATGAATTCTAAAATCAAACGCTCAATTTTGTTAATTTTTGGTTGGTGGATGTTTTTTATTTTGGGTTTTTTCTCAAAGGGAAATCCAGGTTTGGGGAAATTTAAGGAATACCAAGAATGGGACTCATGGACGGCCAAGTTCTCCGGTGGAGCAAACATTCCGTTTCTCATGCTCCAATTGCCTCAGATCATCCTCAATACCCAGAATCTTTTGGCGGGAAACAATACCGCTCTTTCGGCTGTCCCATGGCTGGGAATGTTGACTGGTTTGTTAGGAAACCTTTCGTTGCTTTCTTATTTTGCTAAGAAGAGAGAAAAAGAAGCAGCTGTGGTGCAAACACTGGGAGTGGTCTCTACTCACATTGTGCTTGCACAGCTCACAATGGCTGAAGCAATGCCTATTCAGTATTTTGTTGCTACTTCAGCTGTTGTCACCATCGGTCTCATTGTGAACTGTTTGTACTATTTCGGTAAGCTTAGCAAAACTGTGTGGCAACTGTGGGAAGACGTTATCACTATTGGTGGACTCTCCGTTCTTCCTCAAATCATGTGGTCAACATTTGTCCCTCTTGTACCAAACAGTATCTTGCCTGGGACAACTGCTTTTGGTATTGCTGTGGCAGCTATAATCATGGCTCGAACTGGGAAACTTTCAGAGAAAGGTGTTAGGTTTGTAGGGTCTTTATCTGGATGGACAGCAACTCTTATGTTCATGTGGATGCCAGTTTCCCAAATGTGGACAAATTTTCTAAACCCGGACAACATAAAAGGCTTATCGTCAATCACAATGTTGCTCTCGATGATGGGAAACGGGCTTATGATCCCTCGAGCACTATTTATCCGTGATTTGATGTGGCTCACTGGTTCGCTATGGGCAACTCTCTTTTATGGATATGGAAATATTCTTTGCTTATACCTGGTAAATTGCACCAGCCAGTCATTCTTCGTGGCAGCTACAATTGGTTTGATCTCATGGATAGGACTGGCTTTGTGGAGAGATGCAGTGGCTTATGGTCACAACTCGCCGTTTAGATCTTTGAAAGAACTTGTTTTTGGACCGTAATGAATGAATGTACACGCCATAAACGCCCTTTGTTCAAGCAAGTCCATAGAGATTACATGTATTTTCATTCTTTTTTCCTAAGGGTTATAAGACAACTACTCTGTAATTTCATGTATTTTTTTACTTGAATCATATAGTAAAATAATGTCTGATATCAAAAATAACTTTTGATATTGAACGGTCAAAAATCAAAATCGAAACATTCTCGGTTCA
CDS Sequence
Protein Sequence