Gene Details:
- Gene ID: AT5G17290
- Gene Symbol: APG5, ATATG5, ATG5
- Gene Name: AUTOPHAGY 5, AUTOPHAGY 5
- Description: autophagy protein Apg5 family;(source:Araport11)
- TAIR Accession: locus:2167195
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0000084 — plant sperm cell — célula espermática o esperma (Spanish, exact), male gamete (exact), microgamete (exact), 植物精子細胞 (Japanese, exact), sperm nucleus (related), sperm cell (broad)
Gene Ontology:
- GO:0050832 — acts upstream of or within — defense response to fungus
- GO:0006501 — involved in — C-terminal protein lipidation
- GO:0006914 — acts upstream of or within — autophagy
- GO:0005737 — located in — cytoplasm
- GO:0044804 — involved in — nucleophagy
- GO:0006995 — involved in — cellular response to nitrogen starvation
- GO:0010150 — acts upstream of or within — leaf senescence
- GO:0019776 — contributes to — Atg8-family ligase activity
- GO:0000045 — involved in — autophagosome assembly
- GO:0034045 — is active in — phagophore assembly site membrane
- GO:0000422 — involved in — autophagy of mitochondrion
- GO:0034274 — part of — Atg12-Atg5-Atg16 complex
- GO:0042594 — acts upstream of or within — response to starvation
Germplasm Phenotype:
- CS39993 — Under a short-day photoperiod (8h light/16h dark), the atg5-1 plants grew slower resulting in smaller plants, flowered later with reduced fecundity, and showed enhanced senescence of rosette leaves than wild type; hypersensitive to either nitrogen or carbon deprivation.
- SAIL_129_B07 — early senescence; accumulation of high levels of reactive oxygen species.
- atg5-1 — The T-DNA insertion prevents accumulation of the ATG5 mRNA in the mutants. Absence of 50-kD and a 40-kD proteins, which correspond to the sizes of the conjugate ATG12-ATG5 and the ATG5 proteins, respectively. Homozygous atg5-1 seedlings germinated and developed normally, and flowered and set seed at the same rate as wild-type plants under a long-day photoperiod (16h light/8h dark). Under a short-day photoperiod (8h light/16h dark), the atg5-1 plants grew slower resulting in smaller plants, flowered later than wild type with reduced fecundity, and showed enhanced senescence of rosette leaves. Hypersensitive to N-deficient growth conditions (mutants presented enhanced chlorosis of the cotyledons and reduced true leaf formation). Low recovery rates (20%) after restoration of N in the media, as compared to 100% recovery rates in wildtype. Hypersensitive to carbon starvation induced by darkness (plants become severely chlorotic and flaccid faster and protein loss was higher than in wild type). In C-starved plants the protein levels of ATG7 decreased and the ATG5 increased in the mutant, whereas the protein levels of ATG8 did not drop, but the ATG8 mRNA level increased, unlike in wild type.
- lon2-2 atg5-5 — IBA responsiveness to lon2-2 restored
- lon2-2 atg5-6 — IBA responsiveness to lon2-2 restored
Function-related keywords:
Literature:
- Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. DOI: 10.1104/pp.104.044362 ; PMID: 15310832
- Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. DOI: 10.1104/pp.105.060673 ; PMID: 16040659
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. DOI: 10.1105/tpc.109.068635 ; PMID: 19773385
- The formation of Anthocyanic Vacuolar Inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. DOI: 10.1093/mp/ssp071 ; PMID: 20085894
- ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. DOI: 10.1111/j.1365-313X.2010.04166.x ; PMID: 20136727
- A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. DOI: 10.1111/j.1365-313X.2011.04553.x ; PMID: 21395886
- Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. DOI: 10.1111/j.1469-8137.2012.04084.x ; PMID: 22404536
- Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. DOI: 10.1111/nph.12307 ; PMID: 23647084
- Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in Arabidopsis. DOI: 10.1105/tpc.114.124677 ; PMID: 24808053
- Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. DOI: 10.1105/tpc.15.00589 ; PMID: 26342015
- Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. DOI: 10.1080/15548627.2015.1106664 ; PMID: 26735434
- TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. DOI: 10.1105/tpc.17.00056 ; PMID: 28351989
- Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in Arabidopsis thaliana. DOI: 10.1104/pp.16.01576 ; PMID: 28710132
- Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? DOI: 10.1093/jxb/erx482 ; PMID: 29281085
- Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. DOI: 10.1080/15548627.2017.1407888 ; PMID: 29377765
- Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. DOI: 10.1093/jxb/ery388 ; PMID: 30395253
- The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy. DOI: 10.1104/pp.18.01379 ; PMID: 30510038
- Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. DOI: 10.1111/nph.15913 ; PMID: 31077612
- Cadmium induces reactive oxygen species-dependent pexophagy in Arabidopsis leaves. DOI: 10.1111/pce.13597 ; PMID: 31152467
- Autophagy-deficient Arabidopsis mutant atg5, which shows ultraviolet-B sensitivity, cannot remove ultraviolet-B-induced fragmented mitochondria. DOI: 10.1039/c9pp00479c ; PMID: 33237047
- Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii. DOI: 10.1038/s41598-021-83067-6 ; PMID: 33574453
- Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. DOI: 10.1016/j.molcel.2021.03.026 ; PMID: 33961777
- The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. DOI: 10.1186/s12870-021-03119-x ; PMID: 34281507
- Autophagy mutants show delayed chloroplast development during de-etiolation in carbon limiting conditions. DOI: 10.1111/tpj.15452 ; PMID: 34365695
- The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. DOI: 10.1093/plcell/koab210 ; PMID: 34436598
- γ-Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress. DOI: 10.1093/plphys/kiac010 ; PMID: 35078231
- Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. DOI: 10.1007/s00299-022-02872-z ; PMID: 35507055
- Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. DOI: 10.1093/plcell/koac251 ; PMID: 35961047
- TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. DOI: 10.1038/s41467-022-33402-w ; PMID: 36163196
- Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in Arabidopsis. DOI: 10.1073/pnas.2208351120 ; PMID: 36696447
- The phosphatidylinositol 3-phosphate effector FYVE3 regulates FYVE2-dependent autophagy in Arabidopsis thaliana. DOI: 10.3389/fpls.2023.1160162 ; PMID: 37008475
- FRIENDLY is required for efficient dark-induced mitophagy and controlled senescence in Arabidopsis. DOI: 10.1016/j.freeradbiomed.2023.04.007 ; PMID: 37085125
- Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. DOI: 10.1104/pp.105.060673 ; PMID: 16040659
Sequences:
cDNA Sequence
- >AT5G17290.1
CGTACGCCTTATTAATACCACATAAAGACGCAAGAGAAGATGACGTCATACAGAAACAGCGTCGTTTTGAAAGCTGAGTTTTTTTTGTGAAGCGAGCGAGCGTGAGAAGGTGTGACGGGGAAGAGAATGGCGAAGGAAGCGGTCAAGTATGTATGGGAAGGAGCAATTCCTCTGCAGATTCATCTCCACAAATCCGACGTCGCTTCTCACCCTGCTCCTCCTCCTGCTCTTGTGTTAGCACCAAGAATAGGATATTTGCCTCTGTTGATTCCTCTTATAAAGCCTTATTTCAAGGATTCACTTCCTCCTGGTGAAGATTCAATTTGGTTTGATTACAAAGGATTTCCTCTAAAATGGTATATACCAACAGGTGTTCTTTTCGATCTCCTTTGTGCAGAACCCGAAAGACCATGGAATCTCACGATACACTTTAGAGGATATCCTTGCAACATACTGATACCATGTGAAGGAGAAGATTCTGTAAAATGGAACTTTGTTAATTCTTTGAAAGAGGCACAATATATCATCAATGGAAATTGCAAGAATGTTATGAACATGTCTCAGAGTGATCAAGAGGATCTATGGACCTCTGTCATGAACGGTGATCTTGATGCCTATACAAGATTATCACCCAAGCTTAAAATGGGAACAGTCGAAGATGAGTTTTCAAGGAAAACAAGTTTGTCATCTCCACAATCTCAACAAGTTGTGCCTGAGACGGAGGTGGCTGGACAAGTTAAGACAGCAAGAATTCCTGTTCGGTTGTATGTTCGAAGTCTAAATAAAGATTTCGAGAATCTTGAAGATGTACCGGAGATCGATACCTGGGATGACATCTCGTACCTTAATCGCCCTGTTGAGTTCCTCAAAGAAGAAGGGAAATGCTTTACGTTACGTGACGCCATTAAAAGTCTCCTCCCTGAGTTTATGGGAGACAGAGCGCAAACGAGTGGTGAAGAAAGAAGCATAGATGATACAGAAGAAGCAGATGGGTCGAGGGAGATGGGTGAAATCAAATTGGTAAGGATACAAGGGATAGAAATGAAGCTAGAGATACCGTTTTCGTGGGTGGTAAATAACTTGATGAACCCAGAATTCTATCTCCATATCTCTGTCCTTGTGAAAGCTCCTCAAAGGTGAAGTGTAAGGTTCTCTGCAGTTACAATCCATCTGTGAATTGAATCAAATTGCTTTCTCGTTCCATCTTACAAATCCGAAAGAATCAATGATTTGTTGTATACAGCTACTTCTTCTATTTCTGATAGAAGCAAGAACACAGAATACAGAAAAGAAAGTAGAAATATTTTGATTGACTCGTTAGCTCTTTTACATTTGTTACTTGACGGTTTCCTCTCTGAGCAAATTTGATTGAAATCAATTTATGGTCGATATAATAATCACTACTTTCTTCTATTCACAAGTAAATCAGCTCAAGTTCATAGAGAGATCCAAAATGTTGTTCAACAAAAGCACTGTATCATCAAATCGACAAAGACAAATGTTTAATTTCTCCATTAACAATGCGAGGAAAAATCAGTCAAATTGATTTAGTTTCTCCAGAAAGCTGCTTGTTGTAATCTTCGAGCTCATCGTAATAAACATCCCAAACGCATCGGACGCAACCGCTACCGCAACAATCGCCAGGCTCTGGTTTCTCTGGCGGTGGAGGAACCGAAACTCCCACCTCCTTCTTATCTTCTGTCTCCTTCTTGTTTGTCTCCTCCTTGGAAGCTTCTACAAGATTCTTGCTCTCGGTCGTCGCCATGGTCACCGGAGATTTGAGCTGTTGTTCTGGAGATACGGAAGTGATTGAATAATTGGAGAAAGATCGTTTGAGAGGGAGATGTCGCGTCAAACCAAATCTCATGCTCAAAAGCACATCGTGAAGGCTAGAACCCGGTGATGTAACGATCGAGATTCGAGGAAGAAGAGACACAACAACCATACGCACAGATCAAAAAGATTTGTTCTCTTCTTTTTTTTTCTATTTCCTTTTTTCGTGTCAGAATTGATTTCTTTATGACCTGTCATCCTATAGTTGGCAAAAAAAGCCGCCAATCATAAACGGCACGCATATTTATCTTCTAAACGTTAAAACGGCACGACATCTTTTTTGAACACAAGAACCAACAACTTCTTGATCTTCAGCTGCGCCATGATTTTGA
CDS Sequence
Protein Sequence