Gene Details:
- Gene ID: AT5G16850
- Gene Symbol: ATTERT, TERT
- Gene Name: telomerase reverse transcriptase, telomerase reverse transcriptase
- Description: telomerase reverse transcriptase;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000003 — whole plant — planta entera (Spanish, exact), 植物体全体 (Japanese, exact), clonal colony (related), colony (related), bush (narrow), frutex (narrow), frutices (narrow), gametophyte (narrow), herb (narrow), liana (narrow), prothalli (narrow), prothallium (narrow), prothallus (narrow), seedling (narrow), shrub (narrow), sporophyte (narrow), suffrutex (narrow), suffrutices (narrow), tree (narrow), vine (narrow), woody clump (narrow), genet (broad), ramet (broad)
Germplasm Phenotype:
- SALK_041265C — AtTERT deficiency leads to telomere shortening and absence of telomerase activity.
- SALK_050921 — AtTERT deficiency leads to telomere shortening and absence of telomerase activity.
- atm / tert — During five generations of growth, both tert and atm/tert lose about 500 bp of chromosome length per generation. But, whereas tert mutants show no visible growth defects through the G6 generation, atm/tert mutants in G5 show severe growth defects, such as aberrant leaf shape, delayed flowering, a loss of apical dominance, and reduced fertility. atm/tert mutants in G5 have a much higher rate of bridged chromosomes than G5 tert mutants.
- atm / tert — atm tert mutants undergo Telomere Rapid Deletion (TRD) events, that can lead to the production of a chromosome with a very short telomere. Just one of these structures can prompt end-to-end chromosomal fusion events in the G5 generation. The anaphase bridges apparent in these atm/tert mutants seem to involve only a single chromosome in each distinct mutant line, and seem to occur between sister chromatids. These plants exhibit the same overall level of aneuploidy in the G5 generation as tert mutants do in the G6 generation (~52% of cells showing abnormal centromeric signals in interphase). atm/tert mutants are not as likely to undergo ALT (alternative lengthening of telomeres, a telomerase-independent process) as tert mutants, implicating ATM in this process.
- atr / tert — atr/tert mutants show a more rapid loss of telomeric length than tert and atm/tert mutants, and show a more rapid degeneration in growth habit, becoming small, with aberrant leaf shape, and very low fertility by the third generation whereas tert mutants and tert/atm mutants show normal growth features until later generations. These mutants also have marked defects in chromosomal organization by G3 as evidenced by the presence of anaphase bridges, sometimes involving multiple chromosomes, a phenotype not seen in tert or atm/tert mutants.
- ku70 tert — In contrast to the ku70 mutant, which undergo telomerase-dependent expansion to more than twice the normal length in a single generation, the ku70 tert double mutant displays accelerated telomere shortening and a precocious onset of genome stability.
- pot1-1 ku70 tert — Same degree of telomere shortening as in the pot1 ku70 and ku70 tert double mutants.
- pot1-1 tert — Telomeres in the double mutants shortened at the same rate as in either single mutant.
- pot1-1 tert — Telomeres of the same length and sharp banding profile were found in the double mutant, as in their tert and pot1-1 siblings.
- tert — 50% of the mitotic nuclei in anaphase from tert mutants with severe growth defects (in the G8 generation) have anaphase bridges, while none are found in comparable wild type controls. These anaphase bridges occur disproportionately often between rDNA regions. A number of chromosomal defects can also be visualized during metaphase in these mutants. About 30% of the leaf mesophyll cells examined in tert G8 mutants have elevated numbers of nucleoli.
- tert — Late generation, starting around G3, tert mutants have decreased root meristem size and overall root length. This is correlated with decreased telomere length in successive generations suggesting maintenance of meristem activity is coupled to telomere length.
- tert — No obvious phenotypic changes in the first (G1) or second (G2) generation. However, starting in G1, the telomeric smear in AtTERT-deficient plants was replaced by several sharp bands. By G2 at least 11 discrete telomeric fragments were visible.
- tert-2 — tert-2 mutants in the G4 generation exhibit shorter chromosomes, but also form more massive calluses, indicative of an accelerated cell cycle. These calluses also die more quickly than calluses from wild type plants.
Function-related keywords:
Literature:
- Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. DOI: 10.1016/j.ydbio.2007.03.023 ; PMID: 17448460
- Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. DOI: 10.1128/MCB.01490-07 ; PMID: 18212040
- Genome stability in Arabidopsis cells exhibiting alternative lengthening of telomeres. DOI: 10.1159/000167827 ; PMID: 19188710
- Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. DOI: 10.1093/pcp/pcp140 ; PMID: 19812063
- Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. DOI: 10.1016/j.cub.2010.01.051 ; PMID: 20226671
- Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. DOI: 10.1111/tpj.12428 ; PMID: 24397874
- The Arabidopsis thaliana homolog of the helicase RTEL1 plays multiple roles in preserving genome stability. DOI: 10.1105/tpc.114.132472 ; PMID: 25516598
- Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis. DOI: 10.1016/j.celrep.2015.04.013 ; PMID: 25937286
- An armadillo-domain protein participates in a telomerase interaction network. DOI: 10.1007/s11103-018-0747-4 ; PMID: 29948659
- The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. DOI: 10.1111/tpj.14306 ; PMID: 30834599
- Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. DOI: 10.1093/nar/gkab699 ; PMID: 34403479
- Compromised function of ARM, the interactor of Arabidopsis telomerase, suggests its role in stress responses. DOI: 10.1016/j.plantsci.2022.111453 ; PMID: 36087885
- Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. DOI: 10.1038/sj.emboj.7601792 ; PMID: 17627276
Sequences:
cDNA Sequence
- >AT5G16850.1
CGAGAACCCAGAAGACCTTTAATCTCCCGCCTCTTTCACACCATCAGACTCCATTATCGAAGCTCGTTCACTCTTCTCTCTCTCCAAATTCGAGAGAAAGGAGGAGGAAGGTGTAATGCCGCGTAAACCTAGACATCGTGTACCGGAGATTCTATGGAGGTTATTCGGAAACAGAGCCAGGAATTTAAACGACGCAATAGTAGATCTGATTCCTAACCGGAATATCCAGCCGGAGCAATGCCGATGCCGGGGTCAAGGTTGTCTCGGTTGCAGCAGCGATAAACCGGCGTTTCTGCTGCGTTCCGATGATCCCATTCACTACCGTAAACTTCTTCACCGTTGCTTCGTTGTACTTCACGAACAAACCCCTCCGCTTCTGGATTTCTCTCCAACATCTTGGTGGTCACAGAGAGAGATTGTTGAAAGGATTATTGAAATGATGCAATCTGGATGTGATTGCCAAAATGTGATATGTGCCAGATATGATAAGTATGATCAGTCGAGCCCTATTTTGGAGCTATTGACAAGTTCATCTTGGGAGTTTCTTCTCAAGCGGGTCGGTCATGACGTCATGGTTTATCTTCTACAGCAAACATCAATATTCTTACCATTACTAGGGAAAAAACACCAGCAAGTGTCTGGACCTCCTCTATGTATCAAGCATAAGCGGACATTGTCAGTCCATGAAAACAAAAGAAAGAGGGATGACAACGTTCAGCCACCAACGAAAAGGCAGTGGCTTTCTTCAGCTGTCGATGACTGTCCTAAGGATGACTCTGCAACTATTACGCCCATAGTTGGCGAGGATGTAGACCAACATAGAGAGAAAAAAACTACTAAGCGTTCAAGAATATATCTTAAGCGTCGGCGAAAGCAGAGAAAGGTCAATTTCAAAAAAGTTGACTGTAATGCTCCTTGTATAACTCCCAGTACAAATGGTAAAGTCTCAACTGGTAATGACGAAATGAATCTGCACATTGGTATAAATGGAAGTCTCACTGATTTTGTAAAGCAGGCTAAACAGGTTAAAAGAAACAAGAATTTCAAGTTTGGCCTCTCAGAAACGTATTCAGTTATACCACCAAACCACATTTTAAAAACCTTGAGGCCCAACTGCTCTGATTCAAAGCTCCTAATGAACCATATATTTGGTGAAGTAAATGTTTGGTCAACGACGCCATCTCATGGCAAAGGCAATTGCCCCAGTGGATCTATTTGCTTATACCATTCATTGCTCAAGTCTCTTAAAAATCTAATAGGAAAAACAAAGTCTTCACATTTAAAAATGCTACTAGACAAACACTGTCCTGTTCTCTTGCTGCAAGAGGATGCATTGAAGTCCGGAACGACTTCTCAGAGTTCAAGGAGGCAAAAAGCAGATAAGCTGCCTCATGGATCAAGTTCATCACAAACGGGAAAACCCAAATGTCCCAGTGTTGAAGAAAGGAAGCTGTATTGCACGAACGACCAAGTAGTTTCCTTTATTTGGGCCATCTGTAGGTACATTGTTCCAGAAAGTTTGCTTGGGACCACTCATCAGATGAGGGTGCTTAGGAAAAATATAGCGTGGTTTGTTTCAAGGCGACGAAATGAGAAATGCACAGTGAATCAGTTTTTGCATAAAGTGAAACCATCAGATTTCCCATTCTTTGCTAGAAAAGAGTTATGCTGTATGGTCAACGGACATGAACTCCAAAGTGAATCCATCAGAAGTACACAGCAGATGTTGTGCACGAAATGGATTTCTTGGCTTTTTTTAGAGATTGTCAAGAAATTGGTGCACTTCAACTTCTATGCCACTGAAAGCCAAGGAGGACGGCTAAATATTTATTATTACCGGAAAAGGAGCTGGGAAAGATTAATAAGCAAAGAAATTAGCAAAGCCCTTGATGGATATGTCCTAGTAGACGATGCTGAAGCTGAAAGTAGCAGGAAGAAGCTATCAAAGTTTAGATTTTTACCAAAGGCCAATGGTGTGAGGATGGTGTTAGACTTTAGTTCTTCGTCAAGGTCGCAATCTCTTCGTGATACACATGCTGTTTTGAAGGACATCCAGCTCAAAGAACCAGATGTTCTTGGGTCTTCTGTCTTTGACCATGATGATTTCTACAGAAACCTATGCCCATATCTGATCCATTTAAGAAGTCAATCTGGAGAACTTCCTCCTTTGTACTTTGTGGTTGCGGATGTATTCAAAGCATTTGATTCAGTCGACCAGGGTAAGCTGCTTCATGTCATTCAAAGTTTTCTGAAAGATGAATACATCTTAAACAGATGTAGGCTGGTCTGCTGTGGGAAGAGATCCAATTGGGTAAACAAAATACTAGTCTCGAGTGACAAAAATTCTAACTTTTCAAGATTCACATCAACTGTTCCATATAATGCACTGCAAAGTATCGTGGTTGATAAGGGAGAAAACCATCGAGTGAGGAAAAAGGATCTAATGGTTTGGATAGGAAATATGCTAAAGAACAACATGCTGCAGTTGGATAAAAGCTTCTATGTACAAATAGCTGGAATACCTCAGGGACACAGATTATCATCCTTGTTATGTTGTTTTTACTACGGGCATCTCGAGAGGACTTTGATCTACCCATTCCTCGAAGAAGCCTCTAAAGATGTGTCTTCTAAAGAATGCAGTAGAGAGGAAGAGCTTATAATTCCCACGAGCTATAAGTTACTGAGATTTATTGATGACTACCTTTTTGTGTCTACCTCAAGAGATCAGGCGAGTAGCTTCTATCACAGGTTGAAGCATGGATTTAAAGATTACAACTGCTTCATGAACGAAACAAAATTCTGCATAAATTTTGAAGATAAAGAAGAACATAGGTGTTCTTCTAATAGAATGTTTGTGGGAGATAATGGAGTTCCTTTTGTCAGATGGACGGGTTTGCTTATTAATTCCCGCACATTTGAAGTTCAAGTTGACTACACAAGGTACTTGAGTGGCCATATAAGCTCAACTTTTTCTGTAGCTTGGCAGAACAAACCAGTTAGAAATCTTCGGCAAAAATTGTGTTACTTCTTGGTTCCGAAATGTCATCCAATTCTATTTGACTCGAACATCAACTCGGGAGAAATCGTCAGGTTAAACATCTATCAGATCTTTCTGTTGGCTGCAATGAAGTTTCACTGTTATGTCTACGAGGTGTCCCGGTTTTGGAAGCTTCATCCTCAAACTTTGTTCAAATTCATCACAATATCTGTCAGGTACATGTTCAGACTCATAAATAGAAGGGTGCGCAGAATCAACACTGGTTCTAGTTTCAGACCAGTTCTTAAACTATACAAAGAAGAAGTGATATGGCTTGGCTTAGACGCTTATATTCAAGTTCTGAAGAAGAAAAACTCGAGATATCGAATGCTCTTGATCTATTTAAAATCTGCACTTTCTAAACACTCTCTTTCTCAGCAGCTATCGTCGGAATTGAGGTATGCAACAGACCGGTCAAACTCTTCTTCGCTGTGGAAGTTGAATTATTGAAACTGATCTTAACTAGATTTTATCATCGAAACTTAGGTAGATCCTTTAAATTTCTATTTCAGTCATTTTGATAATCTAGGAACAAAATGGATTTGTAACATTTAGGGTAAAGAAAGATTTAAATGTCAACTTATTAAATATGT - >AT5G16850.2
CGAGAACCCAGAAGACCTTTAATCTCCCGCCTCTTTCACACCATCAGACTCCATTATCGAAGCTCGTTCACTCTTCTCTCTCTCCAAATTCGAGAGAAAGGAGGAGGAAGGTGTAATGCCGCGTAAACCTAGACATCGTGTACCGGAGATTCTATGGAGGTTATTCGGAAACAGAGCCAGGAATTTAAACGACGCAATAGTAGATCTGATTCCTAACCGGAATATCCAGCCGGAGCAATGCCGATGCCGGGGTCAAGGTTGTCTCGGTTGCAGCAGCGATAAACCGGCGTTTCTGCTGCGTTCCGATGATCCCATTCACTACCGTAAACTTCTTCACCGTTGCTTCGTTGTACTTCACGAACAAACCCCTCCGCTTCTGGATTTCTCTCCAACATCTTGGTGGTCACAGAGAGAGATTGTTGAAAGGATTATTGAAATGATGCAATCTGGATGTGATTGCCAAAATGTGATATGTGCCAGATATGATAAGTATGATCAGTCGAGCCCTATTTTGGAGCTATTGACAAGTTCATCTTGGGAGTTTCTTCTCAAGCGGGTCGGTCATGACGTCATGGTTTATCTTCTACAGCAAACATCAATATTCTTACCATTACTAGGGAAAAAACACCAGCAAGTGTCTGGACCTCCTCTATGTATCAAGCATAAGCGGACATTGTCAGTCCATGAAAACAAAAGAAAGAGGGATGACAACGTTCAGCCACCAACGAAAAGGCAGTGGCTTTCTTCAGCTGTCGATGACTGTCCTAAGGATGACTCTGCAACTATTACGCCCATAGTTGGCGAGGATGTAGACCAACATAGAGAGAAAAAAACTACTAAGCGTTCAAGAATATATCTTAAGCGTCGGCGAAAGCAGAGAAAGGTCAATTTCAAAAAAGTTGACTGTAATGCTCCTTGTATAACTCCCAGTACAAATGGTAAAGTCTCAACTGGTAATGACGAAATGAATCTGCACATTGGTATAAATGGAAGTCTCACTGATTTTGTAAAGCAGGCTAAACAGGTTAAAAGAAACAAGAATTTCAAGTTTGGCCTCTCAGAAACGTATTCAGTTATACCACCAAACCACATTTTAAAAACCTTGAGGCCCAACTGCTCTGATTCAAAGCTCCTAATGAACCATATATTTGGTGAAGTAAATGTTTGGTCAACGACGCCATCTCATGGCAAAGGCAATTGCCCCAGTGGATCTATTTGCTTATACCATTCATTGCTCAAGTCTCTTAAAAATCTAATAGGAAAAACAAAGTCTTCACATTTAAAAATGCTACTAGACAAACACTGTCCTGTTCTCTTGCTGCAAGAGGATGCATTGAAGTCCGGAACGACTTCTCAGAGTTCAAGGAGGCAAAAAGCAGATAAGCTGCCTCATGGATCAAGTTCATCACAAACGGGAAAACCCAAATGTCCCAGTGTTGAAGAAAGGAAGCTGTATTGCACGAACGACCAAGTAGTTTCCTTTATTTGGGCCATCTGTAGGTACATTGTTCCAGAAAGTTTGCTTGGGACCACTCATCAGATGAGGGTGCTTAGGAAAAATATAGCGTGGTTTGTTTCAAGGCGACGAAATGAGAAATGCACAGTGAATCAGTTTTTGCATAAAGTGAAACCATCAGATTTCCCATTCTTTGCTAGAAAAGAGTTATGCTGTATGGTCAACGGACATGAACTCCAAAGTGAATCCATCAGAAGTACACAGCAGATGTTGTGCACGAAATGGATTTCTTGGCTTTTTTTAGAGATTGTCAAGAAATTGGTGCACTTCAACTTCTATGCCACTGAAAGCCAAGGAGGACGGCTAAATATTTATTATTACCGGAAAAGGAGCTGGGAAAGATTAATAAGCAAAGAAATTAGCAAAGCCCTTGATGGATATGTCCTAGTAGACGATGCTGAAGCTGAAAGTAGCAGGAAGAAGCTATCAAAGTTTAGATTTTTACCAAAGGCCAATGGTGTGAGGATGGTGTTAGACTTTAGTTCTTCGTCAAGGTCGCAATCTCTTCGTGATACACATGCTGTTTTGAAGGACATCCAGCTCAAAGAACCAGATGTTCTTGGGTCTTCTGTCTTTGACCATGATGATTTCTACAGAAACCTATGCCCATATCTGATCCATTTAAGAAGTCAATCTGGAGAACTTCCTCCTTTGTACTTTGTGGTTGCGGATGTATTCAAAGCATTTGATTCAGTCGACCAGGGTAAGCTGCTTCATGTCATTCAAAGTTTTCTGAAAGATGAATACATCTTAAACAGATGTAGGCTGGTCTGCTGTGGGAAGAGATCCAATTGGGTAAACAAAATACTAGTCTCGAGTGACAAAAATTCTAACTTTTCAAGATTCACATCAACTGTTCCATATAATGCACTGCAAAGTATCGTGGTTGATAAGGGAGAAAACCATCGAGTGAGGAAAAAGGATCTAATGGTTTGGATAGGAAATATGCTAAAGAACAACATGCTGCAGTTGGATAAAAGCTTCTATGTACAAATAGCTGGAATACCTCAGGGACACAGATTATCATCCTTGTTATGTTGTTTTTACTACGGGCATCTCGAGAGGACTTTGATCTACCCATTCCTCGAAGAAGCCTCTAAAGATGTGTCTTCTAAAGAATGCAGTAGAGAGGAAGAGCTTATAATTCCCACGAGCTATAAGTTACTGAGATTTATTGATGACTACCTTTTTGTGTCTACCTCAAGAGATCAGGCGAGTAGCTTCTATCACAGGTTGAAGCATGGATTTAAAGATTACAACTGCTTCATGAACGAAACAAAATTCTGCATAAATTTTGAAGATAAAGAAGAACATAGGTGTTCTTCTAATAGAATGTTTGTGGGAGATAATGGAGTTCCTTTTGTCAGATGGACGGGTTTGCTTATTAATTCCCGCACATTTGAAGTTCAAGTTGACTACACAAGGTACTTGAGTGGCCATATAAGCTCAACTTTTTCTGTAGCTTGGCAGAACAAACCAGTTAGAAATCTTCGGCAAAAATTGTGTTACTTCTTGGTTCCGAAATGTCATCCAATTCTATTTGACTCGAACATCAACTCGGGAGAAATCGTCAGGTTAAACATCTATCAGATCTTTCTGTTGGCTGCAATGAAGTTTCACTGTTATGTCTACGAGGTGTCCCGGTTTTGGAAGCTTCATCCTCAAACTTTGTTCAAATTCATCACAATATCTGTCAGGTACATGTTCAGACTCATAAATAGAAGGGTGCGCAGAATCAACACTGGTTCTAGTTTCAGACCAGTTCTTAAACTATACAAAGAAGAAGTGATATGGCTTGGCTTAGACGCTTATATTCAAGTTCTGAAGAAGAAAAACTCGAGATATCGAATGCTCTTGATCTATTTAAAATCTGCACTTTCTAAACACTCTCTTTCTCAGCAGCTATCGTCGGAATTGAGGTATGCAACAGACCGGTCAAACTCTTCTTCGCTGTGGAAGTTGAATTATTGAAACTGATCTTAACTAGATTTTATCATCGAAACTTAGGTAGATCCTTTAAATTTCTATTTCAGTCATTTTGATAATCTAGGAACAAAATGGATTTGTAACATTTAGGGTAAAGAAAGATTTAAATGTCAACTTATTAAATATGT
CDS Sequence
Protein Sequence