Gene Details:
- Gene ID: AT5G13300
- Gene Symbol: AGD3, FKD2, FKD2, SFC, VAN3
- Gene Name: ARF-GAP DOMAIN3, FORKED 2, SCARFACE, ASCULAR NETWORK DEFECTIVE 3
- Description: ARF GTPase-activating protein;(source:Araport11)
- TAIR Accession: locus:2183916
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
Gene Ontology:
- GO:0009733 — acts upstream of or within — response to auxin
- GO:0010051 — acts upstream of or within — xylem and phloem pattern formation
- GO:0030140 — located in — trans-Golgi network transport vesicle
- GO:0005096 — enables — GTPase activator activity
- GO:0009965 — acts upstream of or within — leaf morphogenesis
- GO:0005634 — located in — nucleus
- GO:0010087 — acts upstream of or within — phloem or xylem histogenesis
- GO:0005886 — located in — plasma membrane
- GO:0035091 — enables — phosphatidylinositol binding
- GO:0005575 — is active in — cellular_component
- GO:0005515 — enables — protein binding
- GO:0006897 — acts upstream of or within — endocytosis
Germplasm Phenotype:
- van3-1 — Abnormal pattern of leaf veneation. Veins are discontinous in cotyledons although the overall architeture of venation is not affected.
Function-related keywords:
Literature:
- The SCARFACE gene is required for cotyledon and leaf vein patterning. DOI: 10.1242/dev.127.15.3205 ; PMID: 10887077
- A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. DOI: 10.1242/dev.127.15.3197 ; PMID: 10887076
- Analysis of the small GTPase gene superfamily of Arabidopsis. DOI: 10.1104/pp.013052 ; PMID: 12644670
- The ATE genes are responsible for repression of transdifferentiation into xylem cells in Arabidopsis. DOI: 10.1104/pp.104.055145 ; PMID: 15618413
- VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. DOI: 10.1242/dev.01716 ; PMID: 15743878
- DRP1A is responsible for vascular continuity synergistically working with VAN3 in Arabidopsis. DOI: 10.1104/pp.105.061689 ; PMID: 15923323
- SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. DOI: 10.1105/tpc.105.039008 ; PMID: 16698946
- Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. DOI: 10.1021/pr8000173 ; PMID: 18433157
- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. DOI: 10.1111/j.1365-313X.2009.03920.x ; PMID: 19473324
- Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. DOI: 10.1242/dev.030098 ; PMID: 19363154
- ADP-ribosylation factor machinery mediates endocytosis in plant cells. DOI: 10.1073/pnas.1016260107 ; PMID: 21118984
- Systematic identification of functional plant modules through the integration of complementary data sources. DOI: 10.1104/pp.112.196725 ; PMID: 22589469
- Localization of Arabidopsis FORKED1 to a RABA-positive compartment suggests a role in secretion. DOI: 10.1093/jxb/erx180 ; PMID: 28575401
- ARF GTPase machinery at the plasma membrane regulates auxin transport-mediated plant growth. DOI: 10.5511/plantbiotechnology.18.0312a ; PMID: 31819717
- Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. DOI: 10.1074/mcp.M600429-MCP200 ; PMID: 17317660
- Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. DOI: 10.1021/pr8000173 ; PMID: 18433157
Sequences:
cDNA Sequence
- >AT5G13300.1
CGCGTGGATATAGTGGATTTTAGCCAGAGTCCTTGTTTTCTCAGATGACCACTGTTACAGAAAAAGCACAGTCAGTCCTCTCTTTAAAAAATTTACACTTGAAACGACGTCGTATCTTACCAACCTTCACGATCTCCGGCGGTAACTAAAACGGCATAGTTTCGCCGTCTTTTGTGGTTAAAATTTTCACAAAGACGGTGAAGTTTTTTTTCTTCCTTTCTTTGATTTGTCTGTCTCTTCTCTTCTCCCGAGACACTTCATCTAAAAAACACACCCCCACTGTTTTCTTGTTTTGTTCTCTCTCGATTTCGCGAGAAAAAAACACCAGCTCAAAATTACGCTTGGCTCGAGACTTTGAAGATCATCGGTTTCTGTTTCTGTTGGATATTTCGGGGAAGCTTTGGGAGGAGAGGATCTCACGTTTTTGTTCGTTTATGGCGTCTGTGTGAGACATAGTGGTGGTTCTAGCTTTTAGGTTTTTGGTGTGTGTGTTCGTGTTATGTTAATTGCTGTTTGTGTCGAAGAAGAGGAAGTAATAAATTAGCTCAAAATGCATTTCACTAAGCTTGATGACTCTCCCATGTTCCGCAAACAGTTACAAAGCATGGAGGAGAGCGCAGAAATATTGCGGGAAAGAAGTCTCAAGTTTTACAAAGGATGCCGGAAATACACTGAAGGACTAGGCGAGGCATACGATGGGGACATTGCTTTCGCAAGTGCACTTGAAACATTTGGTGGAGGCCATAATGATCCAATAAGTGTGGCTTTTGGAGGACCGGTAATGACGAAATTTACAATTGCGTTGAGGGAAATTGGGACTTATAAGGAAGTTCTTCGGTCACAGGTGGAACATATACTGAATGACAGATTACTTCAGTTTGCCAATATGGACTTGCATGAAGTTAAGGAAGCTCGGAAGCGCTTTGACAAGGCTAGCCTTACCTACGATCAGGCCCGTGAGAAGTTTTTATCTTTGAGGAAAGGTACAAAAAGTGACGTTGCTGCTGCTTTAGAACAGGAACTTCATACTTCGAGGTCTATGTTTGAGCAAGCTCGGTTCAACCTTGTGACTGCTCTATCAAATGTTGAAGCTAAGAAAAGGTTTGAATTTTTGGAAGCAGTCAGTGGAACAATGGATGCACATCTTCGGTACTTCAAACAGGGTTACGAATTACTGCATCAGATGGAACCATATATCAATCAGGTCTTGACATATGCGCAACAATCCAGAGAAAGATCAAATTATGAACAAGCAGCACTTAATGAAAAGATGCAGGAGTACAAAAGACAGGTTGATCGAGAGAGCAGGTGGGGTTCAAATGGTTCTAATGGATCACCAAATGGAGATGGCATACAAGCAATCGGTAGAAGCTCTCACAAAATGATAGACGCCGTAATGCAATCTGCTGCAAGAGGAAAGGTGCAAACAATAAGGCAAGGTTATCTCTCTAAACGATCTTCAAACCTGAGAGGAGACTGGAAAAGAAGGTTTTTTGTTCTTGACAGCCGGGGAATGCTCTATTATTACCGAAAACAGTGTAGCAAACCATCTGGGTCTGGAAGCCAGCTTTCTGGACAGAGAAATAGCTCCGAGCTTGGGTCTGGACTGCTTAGTAGGTGGCTTTCTTCGAATAATCATGGACATGGTGGTGTCCATGATGAGAAGTCTGTAGCTCGTCATACAGTGAACTTACTCACCTCAACAATTAAAGTCGACGCTGATCAATCAGATCTGAGGTTTTGCTTTAGGATCATATCACCTACAAAAAACTACACGTTGCAGGCTGAGAGTGCACTCGATCAAATGGATTGGATAGAAAAGATCACTGGGGTTATTGCATCACTACTTAGTTCTCAGGTCCCTGAACAGCGTCTTCCTGGTAGTCCCATGGGAAGTGGCCACCATCGATCTGCTAGTGAAAGTAGCTCATATGAAAGTTCTGAATATGATCATCCTACTACTGAAGAATTTGTATGTGAGAGGAGCTTTTTGGGGTACAATGAAAGGCCATCAAGAAGTTTTCAGCCGCAACGGTCCATTAGAAAGGGTGAGAAGCCCATTGATGCTCTTCGAAAGGTCTGTGGGAATGACAAATGTGCGGATTGTGGAGCTCCAGAACCAGACTGGGCTTCTTTAAATCTGGGGGTTCTTGTCTGTATCGAATGTTCTGGTGTTCACCGTAATCTTGGTGTGCATATATCTAAGGTTAGGTCACTCACTCTCGACGTGAAAGTATGGGAGCCATCTGTTATAAGTTTGTTCCAAGCTCTTGGAAATACTTTCGCAAACACAGTTTGGGAGGAATTGCTTCATTCAAGGAGCGCCATCCATTTTGACCCCGGCTTAACAGTGTCTGATAAATCCAGGGTGATGGTCACTGGAAAACCCAGCTATGCTGATATGATATCTATCAAGGAGAAGTATATACAAGCTAAGTATGCGGAGAAGTTATTTGTTCGGAGATCAAGAGACAGCGATTTCCCACAATCAGCTGCACAACAAATGTGGGACGCAGTGAGTGGCAATGATAAAAAAGCTGTTTACCGGCTCATTGTCAATGGTGATGCGGATGTGAATTATGTGTATGACCAAACTTCCAGTTCTTCGTTAACACTTTCCAGAGTAATATTAGTACCAGAAAGGCCAAAGCGTGAGGATGTTCTACTCAGATTAAGAAATGAGTTACTTGATAGAACAGGTAGTTCTTCAAATATATCTCCTGAGGGAAGCGGAGGTTCCTCTCTGCTTCACTGTGCTTGTGAGAAGGCAGACCTTGGGATGGTAGAGCTTTTGCTGCAGTATGGTGCAAATGTAAACGCCTCAGATTCAAGTGGTCAAACGCCGCTGCACTGTTGTCTTCTCAGAGGAAAAGTGACAATAGCAAGATTGCTTCTCACTAGGGGAGCAGACCCGGAAGCTATGAACAGAGAAGGCAAAACCGCTCTTGATATTGCTGCAGAGTCAAATTTTACTGATCCAGAAGTTCTTGCTCTCCTTTCAGACACAAATGGATACAATCACAGACAGTGCTGATAAAGATGCATAGGCTTGCGGACATAAAAATTCCGGAGCTATGTTTCATCGTTGCTTTCACGGTCTGAAGAGCCAATCAACACTAAAGAAGGACCTCTAATGGTCTCTAGCAAGTTTAGCCCCCAATTAAGTATTGTATTGATGTTTTTGTGATGGATGGATATAGGCTGCATATTGGGAAATTATAGTGTATTGTATTGTGTCGTGTTGTGTGTATGTGGGACTATAGCATCCTGAGTTTGTCATGTCCAGACGTTGTAACTTGTAAGCAATTACTTATGGTTTTGTTCACTTCGTATTAACGTATTTAATTTGTGGCTCGATTTTGGTTTTGAATCTGTGTCAAAACTAAGATAATTTACGTGTTAAACCAGGC
CDS Sequence
Protein Sequence