Gene Details:
- Gene ID: AT5G11110
- Gene Symbol: ATSPS2F, KNS2, SPS1, SPS2F, SPSA2
- Gene Name: sucrose phosphate synthase 2F, KAONASHI 2, SUCROSE PHOSPHATE SYNTHASE 1, sucrose phosphate synthase 2F, sucrose-phosphate synthase A2
- Description: sucrose phosphate synthase 2F;(source:Araport11)
- TAIR Accession: locus:2184891
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0000084 — plant sperm cell — célula espermática o esperma (Spanish, exact), male gamete (exact), microgamete (exact), 植物精子細胞 (Japanese, exact), sperm nucleus (related), sperm cell (broad)
Gene Ontology:
- GO:0005634 — located in — nucleus
- GO:0010208 — involved in — pollen wall assembly
- GO:0005986 — involved in — sucrose biosynthetic process
- GO:0071836 — involved in — nectar secretion
- GO:0046524 — enables — sucrose-phosphate synthase activity
- GO:0016157 — enables — sucrose synthase activity
Germplasm Phenotype:
- kns2 — Defects are specific to pollen exine structure. Smaller mesh size in the exine structure. Increased number of baculae. Fully fertile.
Function-related keywords:
Literature:
- Stable isotope labeling of phosphopeptides for multiparallel kinase target analysis and identification of phosphorylation sites. DOI: 10.1002/rcm.1093 ; PMID: 12845583
- A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. DOI: 10.1104/pp.104.057299 ; PMID: 15734908
- Variations in CYP74B2 (hydroperoxide lyase) gene expression differentially affect hexenal signaling in the Columbia and Landsberg erecta ecotypes of Arabidopsis. DOI: 10.1104/pp.105.067249 ; PMID: 16258015
- An integrated strategy for identification and relative quantification of site-specific protein phosphorylation using liquid chromatography coupled to MS2/MS3. DOI: 10.1002/rcm.2236 ; PMID: 16287031
- Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. DOI: 10.1007/s10142-005-0014-z ; PMID: 16463051
- Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. DOI: 10.1186/1471-2164-7-81 ; PMID: 16615871
- Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. DOI: 10.1016/j.jplph.2006.04.014 ; PMID: 16876912
- Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. DOI: 10.1186/gb-2006-7-8-R76 ; PMID: 16916443
- Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. DOI: 10.1111/j.1365-313X.2007.03100.x ; PMID: 17461790
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Identification of kaonashi mutants showing abnormal pollen exine structure in Arabidopsis thaliana. DOI: 10.1093/pcp/pcn131 ; PMID: 18779216
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. DOI: 10.1111/j.1365-3040.2010.02265.x ; PMID: 21309792
- Pollen wall development: the associated enzymes and metabolic pathways. DOI: 10.1111/j.1438-8677.2012.00706.x ; PMID: 23252839
- Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. DOI: 10.1038/nature13082 ; PMID: 24670640
- Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. DOI: 10.1093/jxb/eru282 ; PMID: 24994761
- Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress. DOI: 10.1016/j.gep.2017.06.001 ; PMID: 28642207
- Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. DOI: 10.1111/pce.14014 ; PMID: 33529396
- A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. DOI: 10.1104/pp.104.057299 ; PMID: 15734908
- An integrated strategy for identification and relative quantification of site-specific protein phosphorylation using liquid chromatography coupled to MS2/MS3. DOI: 10.1002/rcm.2236 ; PMID: 16287031
- Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. DOI: 10.1016/j.jplph.2006.04.014 ; PMID: 16876912
- Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. DOI: 10.1074/mcp.M600429-MCP200 ; PMID: 17317660
- Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. DOI: 10.1021/pr1009433 ; PMID: 21166475
Sequences:
cDNA Sequence
- >AT5G11110.1
ATAAAAAAGAAAGAAAAGGAAGAGACACTTTTTCACAAATCGCCAAATCACCTCTTTCCCTCTCCTTCTTCTTCGTCTCTCTCGTTCGTTTTCTAGAAACCTGTCATCCTCTTCCATCTCCAGATCACAACACTAACTATCATCACTTTTGTATATCCGATTCCTGATTCACCAGTTTTTGTAGAGAGATTGGTTTCTGCTTTCTCCAGATCGTTGAGTTCGGGAGAGCGAACACCAATGGTGGGAAACGACTGGGTGAATAGTTACCTGGAGGCGATTCTCGCAGCCGAACCTGGAATCGCCAATTCCAAACCGCCTGGAACCGGCGATTCCAAATCGTCTCTTCTGCTGAGAGAGCGTGGCCATTTCAGTCCCACTCGTTATTTCGTTGAAGAGGTTATCACAGGCTTTGATGAGACTGATCTTCACCGTTCCTGGGTTCAGGCTGCTGCAACCAGGAGTCCGCAAGAGCGTAACACAAGGTTGGAGAATTTGTGCTGGAGGATCTGGAATTTGGCTCGCCAGAAGAAGCAGGTTGAAGGGAAGAATGCTAAGCGTGAAGCTAAAAGGGAGCGTGAGCGTGAGAAAGCAAGGAGGGAAGTAACTGCTGAAATGTCTGAAGATTTCTCTGAAGGAGAGAAGGCAGATTTGCCTGGTGAAATCCCAACTCCTAGTGATAACAACACCAAAGGAAGAATGTCTCGGATTAGTTCTGTTGATGTCTTTGAGAATTGGTTTGCTCAACACAAAGAGAAAAAGCTTTACATCGTGTTAATAAGTCTTCATGGTTTGATACGTGGTGAAAACATGGAGCTTGGTCGCGATTCTGATACTGGTGGCCAGGTGAAGTATGTTGTGGAACTTGCAAGGGCATTAGGCTCAATGCCAGGAGTCTATCGTGTTGATTTGTTGACCAGACAGGTCACCGCGCCAGATGTGGATTCCAGCTACTCTGAACCGTCTGAGATGTTAAATCCTATAGACACAGATATAGAGCAGGAGAATGGAGAGAGTAGTGGCGCTTATATAATCCGTATTCCTTTTGGCCCGAAAGATAAATATGTACCAAAAGAGCTCCTCTGGCCTCATATCCCTGAATTTGTTGATAGGGCACTTAGCCATATTATGCAGATTTCAAAGGTTCTTGGTGAGCAAATTGGTGGTGGACAACAAGTATGGCCAGTTTCTATTCACGGGCATTATGCAGATGCTGGTGATTCCACTGCTCTTTTATCTGGGGCTCTGAATGTACCAATGGTTTTTACTGGGCATTCTCTTGGTCGTGATAAGCTTGAGCAACTCCTGAAACAAGGACGGCCAAAAGAAGAAATCAATTCCAACTACAAGATATGGAGACGGATAGAGGCAGAGGAGTTATGTCTTGATGCTTCTGAGATTGTCATAACTAGTACAAGGCAAGAGGTAGACGAGCAATGGCGCCTTTATGATGGTTTTGATCCGGTTTTGGAGCGAAAACTCAGAGCAAGAATGAAAAGGGGTGTGAGTTGTCTAGGCAGATTTATGCCTCGCATGGTTGTTATTCCTCCAGGAATGGAATTTCATCACATTGTACCACATGATGTGGATGCAGATGGAGATGATGAAAATCCACAAACTGCTGATCCACCAATTTGGTCTGAGATTATGCGCTTCTTCTCTAACCCGCGCAAGCCTATGATTCTCGCTCTTGCTCGGCCAGACCCTAAAAAGAACTTGGTTACTCTAGTCAAAGCCTTTGGAGAATGCCGTCCATTACGGGAGCTTGCGAACCTTACATTGATAATGGGAAATCGAAATGATATTGATGAGTTGTCCTCCACGAATTCCTCTGTGCTGCTCTCAATTCTGAAGCTAATAGACAAGTACGACTTATACGGTCAAGTGGCAATGCCTAAGCATCACCAACAATCTGATGTGCCTGAAATTTACCGTTTGGCAGCCAAAACAAAGGGAGTATTTATAAATCCAGCGTTCATCGAACCATTTGGACTGACTCTAATCGAGGCAGGAGCTCATGGGCTCCCCACTGTTGCAACAATTAATGGAGGACCTGTCGATATACATCGGGTTCTTGACAATGGTCTTCTAGTTGATCCTCATGATCAGCAAGCTATAGCTGATGCGCTCCTGAAACTAGTTTCTGACAGACAGCTATGGGGAAGATGCAGACAAAATGGCCTAAATAACATTCACCTGTTTTCATGGCCAGAGCACTGCAAAACATATTTGGCTCGGATAGCTTCGTGCAAGCAAAGACATCCTAAATGGCAGAGAGTTGAGTTTGAGAACTCAGACTCCGATTCACCCAGCGACTCTCTTAGAGATATAAATGACATCTCCTTGAATCTAAAACTTTCCTTAGATGGCGAAAAGAGTGGAAGTAACAATGGTGTAGATACTAACTTAGATGCTGAAGACAGAGCTGCTGAACGTAAAGCTGAGGTAGAGAAAGCTGTTTCAACCTTGGCACAAAAGAGCAAACCAACAGAGAAATTTGATTCCAAGATGCCTACTTTGAAAAGACGGAAAAATATATTTGTCATTTCTGTGGACTGTAGCGCAACCTCAGATCTTCTTGCAGTGGTGAAAACAGTTATTGATGCTGCAGGAAGAGGCAGTTCAACAGGATTCATTCTCTCAACCTCAATGACAATATCTGAGACTCACACAGCACTGCTTTCAGGAGGGTTGAAACCACAAGATTTTGATGCTGTTATTTGCAGCAGTGGAAGTGAACTCTACTTCACGTCCTCTGGTTCAGAGGATAAGACCGCACTTCCTTATACACTCGATGCAGATTACCATTCCCATATAGAATTCCGCTGGGGTGGAGAGAGCTTGAGGAAGACTTTGATCCGTTGGATTAGTTCTGTTGAAGAGAAGAAAAAGACGAAAAAAGGAGAGATTTTAGTTGAAGACGAGTCTTCTTCTACCAACTATTGCCTATCCTTCAAAGTGAAAGATCCCGCTTTGATGCCTCCAATGAAAGAGCTGAGGAAATTGATGAGAAATCAAGCATTACGTTGCAATGCAGTTTACTGCCAAAATGGAGCTAGGCTTAATGTAATCCCTGTTCTTGCATCACGATCTCAGGCCCTTAGGTATTTGCTAGTGCGATGGGGCATTGACTTATCGAACATGGTGGTGTTCGTGGGAGATTCAGGTGACACGGATTACGAAGGCTTGCTTGGAGGAATTCACAAAACAGTGATACTTAAAGGCTTAGCCAGTGACTTGCGTGAGCAACCCGGCAACAGAAGCTACCCAATGGAGGATGTGACTCCACTGAACAGTCCCAACATCACCGAGGCTAAAGAATGTGGTCGTGACGCCATTAAGGTCGCTCTAGAGAAGCTTGGGATCAGTCTCCTCAAGCCTTGAGGACTGAGGCTGTTTTTTTTTTCTCAATAAAAGAAGTTTTTGTTGGACCAATACGCGATATTGCTAATTGATAATCATAACGGCCAACAAAGTGCAATATACTAATAAGATTGTCGCCAAGTACAAATTTTTGTGTTTCACTTTTTTGGGTGATATATTAAAATAACCTTTGTATTATCAAAAATTCTCATATGCTTCCCCGATAGGATTGATGACATATGAAATCTTATGCATTAATCAGTATTAAT
CDS Sequence
Protein Sequence