Information report for AT5G10180
Gene Details
|
|
Functional Descriptions
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- GO:0009507 — located in — chloroplast
- GO:0015116 — enables — sulfate transmembrane transporter activity
- GO:0008271 — enables — secondary active sulfate transmembrane transporter activity
- GO:1902358 — acts upstream of or within — sulfate transmembrane transport
- GO:0008272 — acts upstream of or within — sulfate transport
Functional Keywords
Literature and News
- The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. DOI: 10.1046/j.1365-313x.2000.00768.x ; PMID: 10929111
- Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. DOI: 10.1073/pnas.94.20.11102 ; PMID: 9380766
- Cell cycle-regulated gene expression in Arabidopsis. DOI: 10.1074/jbc.M207570200 ; PMID: 12169696
- Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. DOI: 10.1046/j.1365-313x.2003.01657.x ; PMID: 12609038
- Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. DOI: 10.1104/pp.102.019802 ; PMID: 12805590
- The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. DOI: 10.1104/pp.103.030536 ; PMID: 14730065
- Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. DOI: 10.1093/jxb/erh184 ; PMID: 15208337
- Computational prediction of miRNAs in Arabidopsis thaliana. DOI: 10.1101/gr.2908205 ; PMID: 15632092
- Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. DOI: 10.1111/j.1365-313X.2005.02363.x ; PMID: 15842617
- microRNA-directed phasing during trans-acting siRNA biogenesis in plants. DOI: 10.1016/j.cell.2005.04.004 ; PMID: 15851028
- Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. DOI: 10.1104/pp.105.068684 ; PMID: 16244144
- An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. DOI: 10.1105/tpc.106.044743 ; PMID: 17172353
- Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. DOI: 10.1007/s11103-007-9241-0 ; PMID: 17885809
- Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. DOI: 10.1104/pp.107.110742 ; PMID: 18178671
- Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism. DOI: 10.1093/jxb/ern144 ; PMID: 18596113
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. DOI: 10.1111/j.1365-313X.2008.03690.x ; PMID: 18801012
- MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2010.04216.x ; PMID: 20374528
- Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. DOI: 10.1007/s00425-010-1267-x ; PMID: 20839006
- Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana. DOI: 10.4161/psb.5.10.12608 ; PMID: 20935495
- The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. DOI: 10.1186/1471-2229-11-19 ; PMID: 21261953
- Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. DOI: 10.1111/j.1365-313X.2011.04547.x ; PMID: 21401744
- Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. DOI: 10.1111/tpj.12364 ; PMID: 24164591
- The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis. DOI: 10.1093/pcp/pcu166 ; PMID: 25416292
- Sulfate influx transporters in Arabidopsis thaliana are not involved in arsenate uptake but critical for tissue nutrient status and arsenate tolerance. DOI: 10.1007/s00425-015-2241-4 ; PMID: 25600998
- miR398 and miR395 are involved in response to SO(2) stress in Arabidopsis thaliana. DOI: 10.1007/s10646-017-1843-y ; PMID: 28819808
- QTL and candidate genes associated with leaf anion concentrations in response to phosphate supply in Arabidopsis thaliana. DOI: 10.1186/s12870-019-1996-3 ; PMID: 31533608
- Identification of Potential Genes Encoding Protein Transporters in Arabidopsis thaliana Glucosinolate (GSL) Metabolism. DOI: 10.3390/life12030326 ; PMID: 35330077
- Crosstalk Between Iron and Sulfur Homeostasis Networks in Arabidopsis. DOI: 10.3389/fpls.2022.878418 ; PMID: 35755678
Gene Resources
Sequences
cDNA Sequence
- >AT5G10180.1
TTTTTTCTTCAGAAAAGAAAACACTTTTTTTTTTTGTGCTTTTAGTTTAAATTAACAAAAAAATGGACACCATGAGATTCCACTAACTCATGTGTATATAACATTAGGGAAGCAGTCAATTCATTTCAGCATCCACACACACTTTGAATGCTCAATCAAAGCTTCTTCATAGTTAAACTTCCACACAACGTCAAAACTCGAGAAGAAGATGAAAGAGAGAGATTCAGAGAGTTTTGAATCTCTCTCACATCAAGTTCTCCCAAACACTTCAAATTCAACACACATGATCCAGATGGCCATGGCCAACTCAGGTTCATCTGCAGCCGCACAAGCCGGTCAAGACCAGCCTGACCGGTCAAAGTGGCTGCTTGACTGTCCTGAACCACCTAGCCCGTGGCATGAGCTCAAAAGACAAGTCAAAGGCTCTTTCCTAACCAAAGCCAAAAAGTTCAAGTCACTTCAAAAACAGCCTTTCCCAAAACAAATCCTCTCTGTCCTCCAAGCCATTTTCCCAATCTTCGGTTGGTGCAGAAACTATAAACTCACCATGTTCAAGAACGATCTCATGGCTGGTTTAACCCTCGCTAGCCTCTGCATTCCGCAGAGCATTGGTTATGCAACTCTTGCAAAGCTTGATCCTCAATATGGCCTATATACGAGTGTGGTACCACCATTGATATATGCATTGATGGGGACATCAAGAGAGATAGCAATCGGACCGGTGGCTGTAGTATCTCTTCTTATATCTTCAATGTTGCAGAAACTCATCGATCCAGAAACAGATCCCTTGGGATACAAGAAACTGGTCCTAACCACAACCTTCTTCGCCGGGATCTTCCAAGCTTCTTTCGGTTTATTCAGGTTAGGGTTTCTGGTGGATTTTCTGTCGCACGCAGCCATAGTTGGGTTCATGGGTGGTGCAGCCATTGTAATTGGACTCCAACAGCTTAAAGGTTTGCTTGGTATCACTAACTTCACCACCAACACTGACATTGTCTCTGTTCTTCGAGCTGTCTGGAGATCTTGTCAACAACAATGGAGCCCTCACACTTTCATCCTCGGATGTTCTTTCCTCAGTTTTATCCTTATTACTCGCTTCATCGGGAAGAAGTATAAGAAGCTGTTTTGGCTACCGGCAATAGCTCCGTTGATCGCCGTGGTAGTGTCAACACTAATGGTGTTTCTGACTAAAGCCGACGAGCATGGTGTGAAGACAGTGAGGCACATCAAAGGAGGTCTTAATCCAATGTCCATTCAGGATCTCGACTTTAATACTCCTCATCTCGGACAAATCGCTAAAATCGGATTAATCATTGCCATTGTTGCTCTAACCGAGGCGATTGCGGTGGGGAGGTCGTTCGCCGGAATAAAAGGGTACAGACTCGATGGAAACAAAGAAATGGTGGCCATTGGATTTATGAATGTTCTCGGTTCCTTCACATCTTGTTACGCTGCTACTGGTTCATTCTCTCGGACGGCCGTGAATTTTGCGGCAGGATGTGAGACAGCAATGTCCAACATTGTTATGGCGGTTACGGTGTTTGTAGCACTCGAGTGTCTAACGAGGCTTCTCTACTATACTCCAATCGCCATCCTCGCTTCAATAATTCTCTCAGCACTTCCGGGACTAATCAACATTAACGAGGCTATTCACATTTGGAAAGTCGATAAATTCGATTTTCTTGCTCTCATTGGAGCTTTCTTTGGTGTTTTGTTCGCTTCCGTTGAGATCGGACTTCTTGTCGCGGTGGTTATTTCGTTTGCCAAGATCATACTCATATCAATTCGTCCAGGGATAGAAACGCTTGGAAGAATGCCCGGGACCGATACTTTTACAGATACTAATCAATATCCTATGACGGTTAAGACTCCCGGAGTGTTGATTTTTCGTGTCAAGTCTGCATTGTTGTGCTTTGCCAATGCCAGTTCAATTGAGGAAAGGATTATGGGATGGGTCGATGAGGAAGAAGAAGAAGAAAACACAAAGAGCAATGCCAAGAGAAAGATCCTCTTTGTAGTCCTTGATATGTCAAGTTTGATCAACGTCGATACATCGGGGATTACTGCTTTGCTGGAACTGCATAACAAATTAATCAAAACTGGTGTTGAGCTAGTGATCGTTAACCCGAAATGGCAAGTAATCCACAAGCTGAATCAAGCAAAGTTCGTCGACAGAATCGGTGGCAAAGTTTACTTGACGATCGGCGAAGCTCTTGATGCTTGCTTTGGATTAAAAGTTTAAGAAACAGTTTTCAAAGGACCAGTTGTGTTACGGGTTATTGCATGTGATGAATTTATGTGAGTTGTTGTGATTTAAATAATGTGATGCGTGCATGATCATGATTAATATTTAAGTACGTATGTGTAATAGAGTGCTTGGTCGTGACTGAATAAAGTCATGCAAACTATAATGTGAGGATCGATGGGTGTGTTTGTAACTCGATAGATTTGGAAATAATGTATAATATATGTAAGTTTGAGAATTATTGGTGTTTTGTATGATTGTTGAAATGTTATATAGAATCAGGGATATATTTTTTGGGGTATTTTTGTATTGAAA
CDS Sequence
Protein Sequence