Gene Details:
- Gene ID: AT4G39950
- Gene Symbol: CYP79B2
- Gene Name: cytochrome P450, family 79, subfamily B, polypeptide 2
- Description: cytochrome P450, family 79, subfamily B, polypeptide 2;(source:Araport11)
- TAIR Accession: locus:2140020
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000016 — lateral root primordium — portion of lateral root primordium tissue (exact), primordio de raíz lateral (Spanish, exact), 側根原基 (Japanese, exact)
- PO:0006020 — lateral root apical meristem — meristema apical de la raíz lateral (Spanish, exact), 側根頂端分裂組織 (Japanese, exact), apical meristem of lateral root (related), lateral root meristem (related)
- PO:0006081 — primary root apical meristem — meristema apical de la raíz primaria (Spanish, exact), 一次根頂端分裂組織 (Japanese, exact), apical meristem of primary root (related), embryonic root meristem (related)
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
Gene Ontology:
- GO:0042742 — acts upstream of or within — defense response to bacterium
- GO:0010120 — acts upstream of or within — camalexin biosynthetic process
- GO:0009414 — acts upstream of or within — response to water deprivation
- GO:0009684 — acts upstream of or within — indoleacetic acid biosynthetic process
- GO:0016709 — enables — oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen
- GO:0009507 — located in — chloroplast
- GO:0009682 — acts upstream of or within — induced systemic resistance
- GO:0006569 — acts upstream of or within — tryptophan catabolic process
- GO:0052544 — acts upstream of or within — defense response by callose deposition in cell wall
- GO:0009617 — acts upstream of or within — response to bacterium
- GO:0009625 — acts upstream of or within — response to insect
- GO:0006952 — acts upstream of or within — defense response
- GO:0005506 — enables — iron ion binding
- GO:0002229 — acts upstream of or within — defense response to oomycetes
- GO:0016705 — enables — oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen
- GO:0016020 — is active in — membrane
- GO:0020037 — enables — heme binding
Function-related keywords:
- lateral root primordium , lateral root apical meristem , primary root apical meristem , shoot axis apex , leaf lamina base , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen
Literature:
- Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. DOI: 10.1073/pnas.040569997 ; PMID: 10681464
- Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. DOI: 10.1101/gad.1035402 ; PMID: 12464638
- Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. DOI: 10.1104/pp.011015 ; PMID: 12529537
- Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. DOI: 10.1073/pnas.0305876101 ; PMID: 15148388
- The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. DOI: 10.1104/pp.104.054395 ; PMID: 15579661
- Sites and regulation of auxin biosynthesis in Arabidopsis roots. DOI: 10.1105/tpc.104.029272 ; PMID: 15772288
- New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. DOI: 10.1007/s00425-005-1553-1 ; PMID: 15931500
- Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. DOI: 10.1111/j.1365-313X.2005.02508.x ; PMID: 16167893
- CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. DOI: 10.1104/pp.106.082024 ; PMID: 16766671
- DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. DOI: 10.1111/j.1365-313X.2006.02767.x ; PMID: 16740150
- The role of cytochrome P450 enzymes in the biosynthesis of camalexin. DOI: 10.1042/BST0341206 ; PMID: 17073786
- Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. DOI: 10.1111/j.1365-313X.2006.03019.x ; PMID: 17257166
- Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. DOI: 10.1111/j.1365-3040.2007.01659.x ; PMID: 17470144
- Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. DOI: 10.1105/tpc.107.051383 ; PMID: 17573535
- Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. DOI: 10.1093/jxb/erm043 ; PMID: 17545220
- Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). DOI: 10.1111/j.1365-313X.2008.03476.x ; PMID: 18346197
- Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. DOI: S1016-8478(23)17575-3 ; PMID: 18414013
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Glucosinolate metabolites required for an Arabidopsis innate immune response. DOI: 10.1126/science.1164627 ; PMID: 19095898
- The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2009.03794.x ; PMID: 19154205
- The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. DOI: 10.1105/tpc.109.066670 ; PMID: 19567706
- Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. DOI: 10.1104/pp.109.147660 ; PMID: 20023151
- Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. DOI: 10.1111/j.1365-313X.2010.04197.x ; PMID: 20230487
- Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. DOI: 10.1111/j.1365-313X.2010.04224.x ; PMID: 20408997
- Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis. DOI: 10.1007/s11103-010-9645-0 ; PMID: 20473553
- Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. DOI: 10.1007/s10886-010-9825-z ; PMID: 20617455
- Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. DOI: 10.1105/tpc.110.074344 ; PMID: 20605856
- Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. DOI: 10.1007/s00425-009-0907-5 ; PMID: 19263076
- Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. DOI: 10.1016/j.phytochem.2010.10.018 ; PMID: 21111431
- Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. DOI: 10.1105/tpc.110.079145 ; PMID: 21239642
- Using biologically interrelated experiments to identify pathway genes in Arabidopsis. DOI: 10.1093/bioinformatics/bts038 ; PMID: 22271267
- A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. DOI: 10.1104/pp.111.190140 ; PMID: 22319074
- Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. DOI: 10.1093/mp/sss044 ; PMID: 22522512
- Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. DOI: 10.1111/j.1744-7909.2012.01131.x ; PMID: 22624950
- Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. DOI: 10.1094/MPMI-03-12-0071-R ; PMID: 22852809
- Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. DOI: 10.1104/pp.112.207324 ; PMID: 23073694
- Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). DOI: 10.1371/journal.pone.0048661 ; PMID: 23144921
- Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. DOI: 10.1105/tpc.112.104794 ; PMID: 23209113
- Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. DOI: 10.1371/journal.pone.0055731 ; PMID: 23383346
- Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. DOI: 10.1111/nph.12218 ; PMID: 23528052
- Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. DOI: 10.1111/tpj.12181 ; PMID: 23510449
- LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. DOI: 10.1007/s00425-013-1892-2 ; PMID: 23722561
- Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. DOI: 10.3389/fpls.2014.00626 ; PMID: 25426131
- Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. DOI: 10.1111/tpj.12778 ; PMID: 25645692
- Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. DOI: 10.1105/tpc.15.00127 ; PMID: 25944103
- Camalexin contributes to the partial resistance of Arabidopsis thaliana to the biotrophic soilborne protist Plasmodiophora brassicae. DOI: 10.3389/fpls.2015.00539 ; PMID: 26257750
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. DOI: 10.1038/nature14907 ; PMID: 26352477
- Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. DOI: 10.1016/j.molp.2016.01.005 ; PMID: 26802249
- Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. DOI: 10.1016/j.molp.2016.01.006 ; PMID: 26802248
- New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. DOI: 10.1016/j.jprot.2016.02.012 ; PMID: 26915584
- Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding. DOI: 10.1104/pp.16.00613 ; PMID: 27482077
- Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. DOI: 10.1093/jxb/erx003 ; PMID: 28199692
- Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. DOI: 10.3389/fpls.2017.00534 ; PMID: 28443122
- Genetic Components of Root Architecture Remodeling in Response to Salt Stress. DOI: 10.1105/tpc.16.00680 ; PMID: 29114015
- Short-Term Exposure to Nitrogen Dioxide Provides Basal Pathogen Resistance. DOI: 10.1104/pp.18.00704 ; PMID: 30076223
- The Formation of a Camalexin Biosynthetic Metabolon. DOI: 10.1105/tpc.19.00403 ; PMID: 31511315
- Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. DOI: 10.1016/j.molp.2019.09.009 ; PMID: 31568832
- SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. DOI: 10.1104/pp.19.00818 ; PMID: 31570508
- Negative Regulation of Age-Related Developmental Leaf Senescence by the IAOx Pathway, PEN1, and PEN3. DOI: 10.3389/fpls.2019.01202 ; PMID: 31649689
- Structure-Function Analysis of Interallelic Complementation in ROOTY Transheterozygotes. DOI: 10.1104/pp.20.00310 ; PMID: 32350121
- Differential Expression of Fungal Genes Determines the Lifestyle of Plectosphaerella Strains During Arabidopsis thaliana Colonization. DOI: 10.1094/MPMI-03-20-0057-R ; PMID: 32720872
- Activating the MYB51 and MYB122 to upregulate the transcription of glucosinolates biosynthesis genes by copper ions in Arabidopsis. DOI: 10.1016/j.plaphy.2021.03.025 ; PMID: 33756355
- Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. DOI: 10.1073/pnas.2111521118 ; PMID: 34853170
- Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. DOI: 10.1111/pce.14290 ; PMID: 35147228
- β-Cyanoalanine synthase protects mites against Arabidopsis defenses. DOI: 10.1093/plphys/kiac147 ; PMID: 35348790
- The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis. DOI: 10.3389/fpls.2022.852808 ; PMID: 35401621
- AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis. DOI: 10.1093/plcell/koac255 ; PMID: 35972413
- Arabidopsis transcriptome dataset of the response of imbibed wild-type and glucosinolate-deficient seeds to nitrogen-containing compounds. DOI: 10.1016/j.dib.2023.109047 ; PMID: 37006386
- Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. DOI: 10.1101/gad.1035402 ; PMID: 12464638
- Glucosinolate metabolism and its control. DOI: 10.1016/j.tplants.2005.12.006 ; PMID: 16406306
- Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. DOI: 10.1105/tpc.107.051383 ; PMID: 17573535
Sequences:
cDNA Sequence
- >AT4G39950.2
CTCTAATAATATAGATATTTTGAAACGTTAGGAATAATCGTAATAATGTTCAACGTTGGTGGTGGTACTCAAGATGGACCCTCCCTCCCACATTTTCCTCACTCCTTCGAAGGTGAAGCTCTCTCTTTATCCATGCAGAGACAACAGAAACCACAACAAAAACTTTGAGTCCTCTTCTTCTCTATACACAAACATGAACACTTTTACCTCAAACTCTTCGGATCTCACTACCACTGCAACCGAAACATCGTCCTTTAGCACCTTGTATCTCCTCTCAACACTTCAAGCTTTTGTGGCTATAACCTTAGTGATGCTACTCAAGAAATTGATGACGGATCCCAACAAAAAGAAACCGTATCTGCCACCGGGTCCCACAGGATGGCCGATCATTGGAATGATTCCGACGATGCTAAAGAGCCGGCCCGTTTTCCGGTGGCTCCACAGCATCATGAAGCAGCTCAATACTGAGATAGCATGCGTGAAGTTAGGAAACACTCATGTGATCACCGTCACGTGCCCTAAGATAGCACGTGAGATACTCAAGCAACAAGACGCTCTCTTCGCGTCGAGGCCTTTAACTTACGCTCAGAAGATCCTCTCTAACGGCTACAAAACCTGCGTGATCACTCCCTTTGGTGACCAATTCAAGAAAATGAGGAAAGTTGTGATGACGGAACTCGTATGTCCAGCGAGACACAGGTGGCTCCACCAGAAGAGATCAGAAGAAAACGATCATTTAACCGCTTGGGTATACAACATGGTTAAGAACTCGGGCTCTGTCGATTTCCGGTTCATGACTAGGCATTACTGTGGAAATGCAATCAAGAAGCTTATGTTCGGGACGAGAACGTTCTCTAAGAACACTGCACCTGACGGTGGACCCACCGTAGAAGATGTAGAGCACATGGAAGCAATGTTTGAAGCATTAGGGTTTACCTTCGCTTTTTGCATCTCTGATTATCTGCCGATGCTCACTGGACTTGATCTTAACGGTCACGAGAAGATTATGAGAGAATCAAGTGCGATTATGGACAAGTATCATGACCCAATCATCGACGAGAGGATCAAGATGTGGAGAGAAGGAAAGAGAACTCAAATCGAAGATTTTCTTGATATTTTCATCTCTATCAAAGACGAACAAGGCAACCCATTGCTTACCGCCGATGAAATCAAACCCACCATTAAGGAGCTTGTAATGGCGGCGCCAGACAATCCATCAAACGCCGTGGAATGGGCCATGGCGGAGATGGTGAACAAACCGGAGATTCTCCGTAAAGCAATGGAAGAGATCGACAGAGTCGTCGGGAAAGAGAGACTCGTTCAAGAATCCGACATCCCAAAACTAAACTACGTCAAAGCTATCCTCCGCGAAGCTTTCCGTCTCCATCCCGTCGCCGCCTTCAACCTCCCCCACGTGGCACTTTCTGACACAACCGTCGCCGGATATCACATCCCTAAAGGAAGTCAAGTCCTTCTTAGCCGATATGGGCTGGGCCGTAACCCAAAAGTTTGGGCCGACCCACTTTGCTTTAAACCGGAGAGACATCTCAACGAATGCTCCGAAGTTACTTTGACCGAGAACGATCTCCGGTTTATCTCGTTCAGTACCGGGAAAAGAGGTTGTGCGGCTCCGGCGCTAGGAACGGCGTTGACCACGATGATGCTCGCGAGACTTCTTCAAGGTTTCACTTGGAAGCTACCTGAGAATGAGACACGTGTCGAGCTGATGGAGTCTAGTCACGATATGTTTCTGGCTAAACCGTTGGTTATGGTCGGTGACCTTAGATTGCCGGAGCATCTCTACCCGACGGTGAAGTGAGATGAGACGACGCCGTATATATTTTATGAAACTACTTTTATATAATCGCCCAACCAAGTTTGGTCAATTCCGGTTACCAGAAGATAATTGGTCAAATTGTGAACAAACTTGTGTGTTGGTTTCTTGGTTCTTTTTGGGACACTTGAATTGTGTCTCCTTTACCTCTTCTTTTGTTGTTTTCAATAAAAACTTTTATTACCATTTCAATAAAAAGATCATCAAATTAACAAATCTGCCTGTAATATATATATATTTGGTCAATTTAAATCTAATTGAGAATCTATGACATTTGTTTTTACTGTTAATATAAAGCTCTGT - >AT4G39950.1
CTCTAATAATATAGATATTTTGAAACGTTAGGAATAATCGTAATAATGTTCAACGTTGGTGGTGGTACTCAAGATGGACCCTCCCTCCCACATTTTCCTCACTCCTTCGAAGGTGAAGCTCTCTCTTTATCCATGCAGAGACAACAGAAACCACAACAAAAACTTTGAGTCCTCTTCTTCTCTATACACAAACATGAACACTTTTACCTCAAACTCTTCGGATCTCACTACCACTGCAACCGAAACATCGTCCTTTAGCACCTTGTATCTCCTCTCAACACTTCAAGCTTTTGTGGCTATAACCTTAGTGATGCTACTCAAGAAATTGATGACGGATCCCAACAAAAAGAAACCGTATCTGCCACCGGGTCCCACAGGATGGCCGATCATTGGAATGATTCCGACGATGCTAAAGAGCCGGCCCGTTTTCCGGTGGCTCCACAGCATCATGAAGCAGCTCAATACTGAGATAGCATGCGTGAAGTTAGGAAACACTCATGTGATCACCGTCACGTGCCCTAAGATAGCACGTGAGATACTCAAGCAACAAGACGCTCTCTTCGCGTCGAGGCCTTTAACTTACGCTCAGAAGATCCTCTCTAACGGCTACAAAACCTGCGTGATCACTCCCTTTGGTGACCAATTCAAGAAAATGAGGAAAGTTGTGATGACGGAACTCGTATGTCCAGCGAGACACAGGTGGCTCCACCAGAAGAGATCAGAAGAAAACGATCATTTAACCGCTTGGGTATACAACATGGTTAAGAACTCGGGCTCTGTCGATTTCCGGTTCATGACTAGGCATTACTGTGGAAATGCAATCAAGAAGCTTATGTTCGGGACGAGAACGTTCTCTAAGAACACTGCACCTGACGGTGGACCCACCGTAGAAGATGTAGAGCACATGGAAGCAATGTTTGAAGCATTAGGGTTTACCTTCGCTTTTTGCATCTCTGATTATCTGCCGATGCTCACTGGACTTGATCTTAACGGTCACGAGAAGATTATGAGAGAATCAAGTGCGATTATGGACAAGTATCATGACCCAATCATCGACGAGAGGATCAAGATGTGGAGAGAAGGAAAGAGAACTCAAATCGAAGATTTTCTTGATATTTTCATCTCTATCAAAGACGAACAAGGCAACCCATTGCTTACCGCCGATGAAATCAAACCCACCATTAAGGAGCTTGTAATGGCGGCGCCAGACAATCCATCAAACGCCGTGGAATGGGCCATGGCGGAGATGGTGAACAAACCGGAGATTCTCCGTAAAGCAATGGAAGAGATCGACAGAGTCGTCGGGAAAGAGAGACTCGTTCAAGAATCCGACATCCCAAAACTAAACTACGTCAAAGCTATCCTCCGCGAAGCTTTCCGTCTCCATCCCGTCGCCGCCTTCAACCTCCCCCACGTGGCACTTTCTGACACAACCGTCGCCGGATATCACATCCCTAAAGGAAGTCAAGTCCTTCTTAGCCGATATGGGCTGGGCCGTAACCCAAAAGTTTGGGCCGACCCACTTTGCTTTAAACCGGAGAGACATCTCAACGAATGCTCCGAAGTTACTTTGACCGAGAACGATCTCCGGTTTATCTCGTTCAGTACCGGGAAAAGAGGTTGTGCGGCTCCGGCGCTAGGAACGGCGTTGACCACGATGATGCTCGCGAGACTTCTTCAAGGTTTCACTTGGAAGCTACCTGAGAATGAGACACGTGTCGAGCTGATGGAGTCTAGTCACGATATGTTTCTGGCTAAACCGTTGGTTATGGTCGGTGACCTTAGATTGCCGGAGCATCTCTACCCGACGGTGAAGTGAGATGAGACGACGCCGTATATATTTTATGAAACTACTTTTATATAATCGCCCAACCAAGTTTGGTCAATTCCGGTTACCAGAAGATAATTGGTCAAATTGTGAACAAACTTGTGTGTTGGTTTCTTGGTTCTTTTTGGGACACTTGAATTGTGTCTCCTTTACCTCTTCTTTTGTTGTTTTCAATAAAAACTTTTATTACCATTTCAATAAAAAGATCATCAAATTAACAAATCTGCCTGTAATATATATATATTTGGTCAATTTAAATCTAATTGAGAATCTATGACATTTGTTTTTACTGTTAATATAAAGCTCTGT
CDS Sequence
Protein Sequence