Gene Details:
- Gene ID: AT4G31500
- Gene Symbol: ATR4, CYP83B1, RED1, RNT1, SUR2
- Gene Name: ALTERED TRYPTOPHAN REGULATION 4, cytochrome P450, family 83, subfamily B, polypeptide 1, RED ELONGATED 1, RUNT 1, SUPERROOT 2
- Description: cytochrome P450, family 83, subfamily B, polypeptide 1;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
Germplasm Phenotype:
- CS16401 — Auxin overproduction defects: epinastic cotyledons in the light; numerous adventicious roots; small, dark-green, and epinastic leaves; enhanced apical dominance.
- CS16402 — Adult plants are pale and slightly reticulated; wei2-1 nearly completely suppresses sur2 phenotype.
- CS16422 — Segregates triple mutant plants; ethylene insensitivity of wei8 tar2 seedlings is partially alleviated by sur2, but adults defects of wei8 tar2 (reduced apical dominance, venation defects, abnormal flowers and sterility) are not.
- CS16437 — Plants show auxin overproduction phenotypes: epinastic cotyledons in the light; numerous adventicious roots; small, dark and epinastic leaves (phenotypically similar to sur2 single mutant).
- CS73405 — mutation confers recessive 5-methyl-tryptophan resistance, elevated IAA phenotypes including leaf epinasty, adventitious roots from the hypocotyls, formation of spontaneous necrotic lesions, delayed time to flowering, reduced size, and reduced viability relative to the parental strain
Function-related keywords:
- shoot axis apex , leaf lamina base , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , guard cell
Literature:
- Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. DOI: 10.1046/j.1365-313x.1998.00163.x ; PMID: 9675903
- RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis. DOI: 10.1105/tpc.9.5.731 ; PMID: 9165750
- The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. DOI: 10.1073/pnas.260502697 ; PMID: 11114200
- CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. DOI: 10.1104/pp.102.019240 ; PMID: 12970475
- Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. DOI: 10.1105/tpc.016055 ; PMID: 14671022
- Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. DOI: 10.1111/j.1365-313x.2004.02002.x ; PMID: 14871316
- A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. DOI: 10.1105/tpc.105.033365 ; PMID: 15980261
- Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. DOI: 10.1104/pp.105.067868 ; PMID: 16377752
- Mapping the Arabidopsis organelle proteome. DOI: 10.1073/pnas.0506958103 ; PMID: 16618929
- DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. DOI: 10.1111/j.1365-313X.2006.02767.x ; PMID: 16740150
- Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2beta) is involved in axillary shoot branching via auxin signaling. DOI: 10.1104/pp.106.092163 ; PMID: 17434984
- Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1. DOI: S1016-8478(23)17575-3 ; PMID: 18414013
- Glucosinolate metabolites required for an Arabidopsis innate immune response. DOI: 10.1126/science.1164627 ; PMID: 19095898
- Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. DOI: 10.1104/pp.109.152173 ; PMID: 20081042
- Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. DOI: 10.1007/s00425-009-0907-5 ; PMID: 19263076
- Using biologically interrelated experiments to identify pathway genes in Arabidopsis. DOI: 10.1093/bioinformatics/bts038 ; PMID: 22271267
- Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. DOI: 10.1104/pp.112.207324 ; PMID: 23073694
- Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. DOI: 10.1093/jxb/eru026 ; PMID: 24596172
- Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. DOI: 10.3389/fpls.2014.00626 ; PMID: 25426131
- Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. DOI: 10.1105/tpc.15.00127 ; PMID: 25944103
- CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis. DOI: 10.1093/mp/ssu058 ; PMID: 24908267
- Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. DOI: 10.14348/molcells.2018.0363 ; PMID: 30453730
- Development of a relative quantification method for infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging of Arabidopsis seedlings. DOI: 10.1002/rcm.8616 ; PMID: 31658400
- De novo indol-3-ylmethyl glucosinolate biosynthesis, and not long-distance transport, contributes to defence of Arabidopsis against powdery mildew. DOI: 10.1111/pce.13766 ; PMID: 32275065
- Activating the MYB51 and MYB122 to upregulate the transcription of glucosinolates biosynthesis genes by copper ions in Arabidopsis. DOI: 10.1016/j.plaphy.2021.03.025 ; PMID: 33756355
- The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis. DOI: 10.3389/fpls.2022.852808 ; PMID: 35401621
- Transcript and metabolite network perturbations in lignin biosynthetic mutants of Arabidopsis. DOI: 10.1093/plphys/kiac344 ; PMID: 35880844
- Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. DOI: 10.1105/tpc.016055 ; PMID: 14671022
- Glucosinolate metabolism and its control. DOI: 10.1016/j.tplants.2005.12.006 ; PMID: 16406306
- Mapping the Arabidopsis organelle proteome. DOI: 10.1073/pnas.0506958103 ; PMID: 16618929
- Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. DOI: 10.1074/mcp.M600429-MCP200 ; PMID: 17317660
- Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. DOI: 10.1021/pr060525b ; PMID: 17432890
Sequences:
cDNA Sequence
- >AT4G31500.1
AATTCTGTCACCTGTCAAAAAATCCAAAACAAACCAACCAATAAAACTTTTTGTCTTGCTATATAAACCACATCATCATTCAAAGTAGAAAAGTATCCGAACACAAAGACTTAAGTAAGTCAAACAGAAAAAAATGGATCTCTTATTGATTATAGCCGGTTTAGTAGCGGCTGCAGCCTTCTTTTTCCTCCGTAGCACGACCAAGAAATCTCTCCGGTTACCTCCGGGACCAAAAGGTCTTCCTATTATAGGAAACCTTCACCAGATGGAGAAATTCAACCCCCAACACTTCCTTTTCCGTCTCTCCAAGCTATACGGCCCGATTTTCACGATGAAAATCGGTGGCCGTCGCCTCGCGGTGATCTCCTCGGCCGAGCTAGCCAAGGAGCTACTCAAAACTCAAGACCTCAACTTCACCGCTCGTCCTCTCTTGAAAGGGCAACAAACCATGTCGTATCAAGGCCGTGAGCTTGGTTTCGGACAGTACACCGCGTACTACCGTGAGATGAGGAAGATGTGTATGGTGAACCTCTTCAGCCCGAACCGTGTCGCAAGTTTCAGACCGGTTAGAGAAGAAGAGTGTCAACGGATGATGGACAAGATCTATAAAGCCGCTGATCAATCAGGCACCGTTGATCTAAGTGAGCTTCTCTTGTCTTTCACTAACTGTGTCGTATGTAGACAAGCTTTTGGGAAACGGTACAATGAGTACGGCACAGAGATGAAGAGATTCATAGATATCTTGTACGAGACGCAAGCACTTTTGGGCACTCTGTTTTTCTCCGACCTTTTCCCTTATTTCGGATTCCTTGACAACCTCACTGGTCTCAGTGCACGTCTCAAGAAAGCTTTCAAGGAGCTTGACACTTACCTTCAAGAACTTCTAGACGAGACTCTTGACCCTAACCGCCCTAAACAAGAAACAGAGAGTTTCATTGATCTTTTGATGCAGATCTACAAAGACCAACCTTTCTCCATCAAATTCACTCACGAAAATGTCAAGGCCATGATATTGGATATTGTTGTGCCGGGAACTGACACGGCGGCTGCAGTGGTGGTATGGGCCATGACTTACCTTATTAAGTACCCTGAAGCAATGAAGAAAGCTCAAGACGAAGTGAGGAGTGTGATAGGTGACAAAGGATATGTCTCTGAAGAAGACATACCTAATCTCCCTTACCTAAAGGCAGTCATCAAGGAGTCTCTTCGGCTCGAACCAGTCATCCCCATTCTTCTACACAGAGAAACTATCGCAGACGCAAAGATAGGTGGCTATGATATTCCGGCCAAGACCATCATTCAGGTGAACGCATGGGCGGTTTCTCGTGACACAGCCGCGTGGGGAGACAACCCTAATGAGTTCATTCCAGAGAGGTTCATGAACGAGCACAAAGGAGTGGACTTCAAGGGCCAAGATTTTGAGCTCCTACCTTTCGGGTCGGGCCGGAGAATGTGCCCGGCCATGCATCTTGGGATTGCAATGGTAGAGATACCTTTCGCTAACCTTCTCTACAAATTTGACTGGAGTCTACCTAAAGGGATTAAACCAGAGGATATAAAGATGGACGTCATGACTGGACTCGCTATGCACAAGAAAGAACACCTCGTTCTTGCACCAACGAAACACATCTGATGCTATATATATCATTAGGACGTTTCTGCTGGTAGATATGGCGTGACCAATGGTTATTTTTCATTGCAATATCCCTTTTTGTTTTAATGAGTACTATGTTCTCATTTTAACGAATAAAAATGTATCAGTGCTCTTGTTTTTGGACTAGAAAAGAAAGTAGTCCGATGTTTAATATTCGGGTCCCTTTAATATTCCCTCTGGTTTACAATATTTTAAGCTATCTTAGTAAACATCTATAATGTGAATATATGACTAGAAAACAAAAAC
CDS Sequence
Protein Sequence