Gene Details:
- Gene ID: AT4G26970
- Gene Symbol: ACO2
- Gene Name: aconitase 2
- Description: aconitase 2;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
Function-related keywords:
- shoot axis apex , leaf lamina base , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , guard cell
Literature:
- Analysis of the Arabidopsis mitochondrial proteome. DOI: 6919 ; PMID: 11743115
- Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. DOI: 10.1093/pcp/pcg173 ; PMID: 14701923
- Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. DOI: 10.1105/tpc.016055 ; PMID: 14671022
- Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. DOI: 10.1002/rcm.1376 ; PMID: 15052571
- A proteomic analysis of plant programmed cell death. DOI: 10.1016/j.phytochem.2004.04.020 ; PMID: 15276441
- Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. DOI: 10.1105/tpc.105.036806 ; PMID: 16199612
- A reference map of the Arabidopsis thaliana mature pollen proteome. DOI: 10.1016/j.bbrc.2005.09.185 ; PMID: 16242667
- The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. DOI: 10.1002/pmic.200500543 ; PMID: 16502469
- Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. DOI: 10.1007/s11103-006-9087-x ; PMID: 17013749
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. DOI: 10.1104/pp.108.128769 ; PMID: 18820081
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants. DOI: 10.1042/BJ20061874 ; PMID: 17437406
- Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. DOI: 10.1104/pp.109.147942 ; PMID: 20018591
- Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. DOI: 10.1104/pp.109.152413 ; PMID: 20118269
- Selected reaction monitoring to determine protein abundance in Arabidopsis using the Arabidopsis proteotypic predictor. DOI: 10.1104/pp.113.225524 ; PMID: 24296071
- Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis. DOI: 10.1042/BJ20140430 ; PMID: 25061985
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana. DOI: 10.3389/fpls.2016.00070 ; PMID: 26904047
- The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. DOI: 10.1093/plphys/kiab172 ; PMID: 33856472
- Transition Zone1 Negatively Regulates Arabidopsis Aluminum Resistance Through Interaction With Aconitases. DOI: 10.3389/fpls.2021.827797 ; PMID: 35154218
- Analysis of the Arabidopsis mitochondrial proteome. DOI: 6919 ; PMID: 11743115
- Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. DOI: 10.1105/tpc.016055 ; PMID: 14671022
- A reference map of the Arabidopsis thaliana mature pollen proteome. DOI: 10.1016/j.bbrc.2005.09.185 ; PMID: 16242667
- The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. DOI: 10.1002/pmic.200500543 ; PMID: 16502469
- Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. DOI: 10.1002/pmic.200500108 ; PMID: 16526091
- Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. DOI: 10.1371/journal.pone.0001994 ; PMID: 18431481
- Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. DOI: 10.1074/mcp.M700535-MCP200 ; PMID: 18385124
- Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. DOI: 10.1016/j.jprot.2017.06.004 ; PMID: 28627464
Sequences:
cDNA Sequence
- >AT4G26970.1
GCTTGACGAAATCTCTTCTCCGTCTCTCTCTCTCTTTCCCTCGTCCATTCCACGATCTTCTTCCAATCTCAAATCTCCCATTTTCTAGTGTTTCATTTTGATCCTTCTTCCTTCCTCTGGAGATTTCTCAAATCTCTTCAACTATTTTGATTTGCCGCCATGTATCGACGCGCCACTTCCGGCGTGCGTTCTGCCTCCGCAAGGCTTTCTTCTTCCCTCTCCAGGATCGCCTCTAGCGAGACAGCTTCGGTTTCGGCTCCATCTGCGTCGTCGCTTCGCAATCAGACGAACCGATCTAAGAGTTTCTCCTCGGCTCTCCGCTCCTTTCGAGTTTGCTCTGCTTCCACGCGGTGGAGCCATGGTGGGAGCTGGGGATCGCCTGCTAGCCTTCGCGCTCAAGCTAGGAATTCCACTCCGGTTATGGAGAAATTTGAACGGAAATACGCAACCATGGCTTCTGAGCATTCCTACAAGGATATTTTGACAAGTCTTCCTAAACCTGGTGGTGGAGAGTATGGAAAGTACTACTCGTTACCAGCTTTAAACGATCCAAGAATTGATAAGCTGCCATTTTCTGTAAGGATACTATTGGAATCAGCGATTCGTAACTGTGACAACTATCAAGTCACAAAGGATGACGTTGAGAAAATCCTTGACTGGGAGAATACATCTACTAAGCAGGTTGAAATTGCCTTCAAGCCAGCCCGTGTTATCTTACAGGACTTCACTGGAGTACCAGTTCTAGTTGATCTTGCTTCTATGAGGGATGCAGTGAAGAATCTTGGTAGTGATCCTAGCAAGATCAACCCCTTGGTTCCTGTTGATCTTGTCGTTGATCACTCGATCCAAGTTGACTTTGCAAGGTCAGAAGATGCCGCACAGAAAAATTTGGAGCTTGAATTCAAAAGGAACAAAGAAAGATTTACGTTCCTTAAGTGGGGTTCAACAGCCTTCCAAAACATGCTGGTCGTTCCTCCTGGGTCTGGGATTGTCCATCAGGTCAACTTGGAATACCTTGGACGTGTTGTTTTCAACTCGAAAGGATTTCTCTACCCTGATAGCGTTGTTGGAACCGACTCCCACACAACCATGATTGATGGATTAGGAGTCGCTGGGTGGGGTGTTGGAGGAATTGAGGCAGAGGCAGCAATGCTTGGTCAGCCCATGAGCATGGTGTTACCTGGCGTGGTCGGGTTTAAGTTGGATGGAAAGTTGAAGGAAGGGGTTACTGCTACTGATTTAGTTCTCACTGTGACCCAAATATTGAGGAAGCATGGTGTTGTCGGCAAGTTTGTTGAATTTTATGGTGAGGGGATGAGTGAACTTTCACTGGCTGATAGAGCCACAATTGCAAATATGTCTCCCGAGTATGGAGCAACTATGGGTTTCTTCCCAGTGGATCATGTTACACTGGAGTACCTGAAGTTGACAGGAAGAAGCGATGAAACTGTGTCAATGATAGAATCATATTTGCGCGCAAACAATATGTTTGTTGACTACAACGAGCCTCAGCAAGAAAGAGCATACACATCTTATCTGCAGTTAGATTTGGGACATGTTGAACCATGTATTTCTGGTCCTAAAAGGCCTCATGACCGAGTGCCTCTGAAAGATATGAAGGCTGACTGGCATGCATGCCTTGACAATCCTGTTGGATTCAAGGGTTTTGCAGTGCCAAAAGAAAAACAAGAAGAAGTTGTGAAGTTCTCATACAACGGACAACCTGCTGAGATCAAGCATGGTAGTGTTGTTATTGCGGCAATTACTAGTTGTACAAACACGTCAAACCCTAGTGTCATGATCGGAGCAGCACTCGTTGCAAAAAAAGCTTCAGATCTTGGCCTGAAGGTAAAACCATGGGTTAAGACAAGTCTTGCTCCAGGGTCTAGAGTTGTCGAGAAATATTTGGATCGAAGTGGGCTCCGAGAGTCCTTGACCAAGCAAGGATTCGAAATTGTCGGCTACGGCTGCACAACATGCATTGGGAATTCTGGCAACCTTGACCCAGAAGTTGCATCTGCTATAGAAGGAACTGATATCATCCCAGCTGCTGTGCTGTCTGGAAACCGAAACTTTGAAGGTCGTGTTCATCCACAAACAAGAGCAAACTATCTTGCGTCACCACCATTAGTTGTTGCTTATGCCCTTGCTGGAACGGTGGACATTGATTTTGAGAAAGAGCCTATAGGAACCAGAAGTGATGGAAAAAGTGTGTACCTGAGGGATGTATGGCCAAGCAATGAGGAAGTTGCTCAGGTTGTTCAATATAGCGTGCTACCAAGCATGTTCAAGAGCTCGTACGAAACAATAACAGAGGGAAACCCCTTGTGGAATGAACTCTCTGCACCGAGTTCCACGTTATATTCTTGGGATCCAAACTCCACGTACATTCATGAACCTCCGTATTTCAAGAATATGACCGCAAATCCACCTGGTCCTCGTGAAGTGAAGGATGCTTACTGCTTGTTGAACTTTGGGGACAGTGTAACAACAGACCACATCTCTCCAGCAGGAAACATTCAAAAAACTAGTCCTGCTGCAAAGTTTCTAATGGACCGTGGTGTGATTTCGGAAGATTTCAACTCATATGGAAGTCGAAGGGGAAACGACGAGGTTATGGCTCGTGGTACATTTGCCAATATCCGTATTGTTAACAAGCTCTTGAAAGGAGAAGTTGGCCCCAACACTGTTCACATTCCGACTGGAGAGAAGCTTAGCGTTTTCGATGCAGCAAGTAAATACAAGACCGCTGAACAGGATACGATCATCCTGGCTGGTGCTGAGTATGGAAGTGGTAGCTCTCGGGATTGGGCTGCAAAGGGTCCCTTGCTTTTGGGAGTGAAAGCTGTAATTGCCAAGAGCTTTGAGAGAATCCATCGCAGCAACCTGGCTGGTATGGGGATCATTCCTCTGTGTTTCAAGGCTGGGGAGGACGCGGAAACCCTTGGACTCACTGGTCATGAACGCTACACAGTCCACCTTCCTACAAAAGTTAGTGACATTAGACCCGGTCAAGACGTCACTGTAACCACTGACAGTGGCAAATCCTTTGTCTGCACCCTGCGTTTTGATACAGAGGTGGAATTGGCATACTATGATCACGGCGGTATTCTACCATACGTCATCCGGAGTTTGAGCGCCAAGTGATCTCAAAGTGTTTTTCGCCTTTTGTTTTCTTCTTATGTTAAGATCCCAATAAAGCAAGTTTTGTGAGCATCTTTTTTCTTTCAGGTTACACTAAACCTTTGTTGGCAAGAGTTGCTATAAGAAAATGCAAAAATACACACTTCATTTTATAAACAGTTTAACGTATCTTTGACCGTAGCATCAATTGAAAGACCTGGAAACA
CDS Sequence
Protein Sequence