Information report for AT4G26850
Gene Details
|
|
Functional Descriptions
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- GO:0052544 — acts upstream of or within — defense response by callose deposition in cell wall
- GO:0042742 — acts upstream of or within — defense response to bacterium
- GO:0019853 — acts upstream of or within — L-ascorbic acid biosynthetic process
- GO:0019852 — acts upstream of or within — L-ascorbic acid metabolic process
- GO:0010472 — enables — GDP-galactose:glucose-1-phosphate guanylyltransferase activity
- GO:0009408 — acts upstream of or within — response to heat
- GO:0006006 — involved in — glucose metabolic process
- CS69540 — Approximately 70% decrease in ascorbate levels.
- CS69541 — Approximately 70% decrease in ascorbate levels.
- CS888262 — low levels of ascorbic acid (AsA) in leaf tissue of mature plants
- SAIL_769_H05 (homo) — Under both FRc and Rc conditions, the length of mutant hypocotyls and cotyledon area are similar to that of wild type.
- vtc2 — have 10-25% of wild type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at leaf maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide.
- vtc2-1 vtc5-1 — seedlings stopped growing after initial expansion of the cotyledons, which then bleached within 2 weeks. Can be rescued by supplementing the growth medium with L-galactose or ascorbate.
Functional Keywords
Literature and News
- Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. DOI: 10.1093/genetics/154.2.847 ; PMID: 10655235
- Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. DOI: 10.1104/pp.103.026252 ; PMID: 12972657
- Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. DOI: 10.1104/pp.103.032375 ; PMID: 14963245
- The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. DOI: 10.1104/pp.103.032185 ; PMID: 15064386
- Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. DOI: 10.1104/pp.105.062257 ; PMID: 15923322
- Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. DOI: 10.1104/pp.105.067686 ; PMID: 16244149
- Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. DOI: 10.1111/j.1365-313X.2005.02560.x ; PMID: 16262714
- Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. DOI: 10.1093/jxb/erl010 ; PMID: 16720601
- Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. DOI: 10.1093/jxb/erm124 ; PMID: 17586607
- Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. DOI: 10.1007/s11103-007-9227-y ; PMID: 17823777
- Blue light diminishes interaction of PAS/LOV proteins, putative blue light receptors in Arabidopsis thaliana, with their interacting partners. DOI: 10.1007/s10265-007-0118-8 ; PMID: 17982713
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. DOI: 10.1093/jxb/ern229 ; PMID: 18849295
- Glucosinolate metabolites required for an Arabidopsis innate immune response. DOI: 10.1126/science.1164627 ; PMID: 19095898
- Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. DOI: 10.1094/MPMI-23-3-0340 ; PMID: 20121455
- Immunocytochemical determination of the subcellular distribution of ascorbate in plants. DOI: 10.1007/s00425-010-1275-x ; PMID: 20872269
- The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. DOI: 10.1111/j.1365-3040.2011.02369.x ; PMID: 21631536
- The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. DOI: 10.1105/tpc.111.090100 ; PMID: 21926335
- Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. DOI: 10.1074/jbc.M112.341982 ; PMID: 22393048
- Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. DOI: 10.1094/MPMI-07-12-0179-R ; PMID: 23134520
- Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis. DOI: 10.1089/ars.2012.5097 ; PMID: 23343093
- Disease resistance gene-induced growth inhibition is enhanced by rcd1 independent of defense activation in Arabidopsis. DOI: 10.1104/pp.112.213363 ; PMID: 23365132
- Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. DOI: 10.1371/journal.pone.0070289 ; PMID: 23940555
- Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. DOI: 10.1007/s00299-013-1503-5 ; PMID: 24013762
- Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. DOI: 10.1080/09168451.2014.877831 ; PMID: 25036484
- Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. DOI: 10.1016/j.plaphy.2015.02.021 ; PMID: 25749732
- Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1. DOI: 10.1016/j.plantsci.2014.11.007 ; PMID: 25575988
- Ascorbic Acid Integrates the Antagonistic Modulation of Ethylene and Abscisic Acid in the Accumulation of Reactive Oxygen Species. DOI: 10.1104/pp.18.01250 ; PMID: 30723177
- Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light-Induced Ascorbate Accumulation. DOI: 10.1104/pp.19.01556 ; PMID: 32205453
- Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. DOI: 10.1111/ppl.13278 ; PMID: 33215703
- 2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants. DOI: 10.1371/journal.pone.0242833 ; PMID: 33290424
- Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis. DOI: 10.1186/s12870-021-02882-1 ; PMID: 33627094
- Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. DOI: 10.1093/plphys/kiad323 ; PMID: 37265123
Gene Resources
Sequences
cDNA Sequence
- >AT4G26850.1
CTGGTTCACTCATCTCCTATCTATTTAAAGCCCATTCGATATCCTAAAACACTGTATCATCAAAAAACACCTCAAAGAATTATTCATTCAGGCATCTTCTCAAATTTTTGTTTGTGAAAAAAACCCACATCAAAAGATCTCTCATTTATTCGTTTCGTTTCTGCTGTTTTGAGTGTCGGGTTCGTTTTAGCTGTAATCTTTTTTTCCGGCGTTCGATTTGAAAAAATCCGGGGAACAGGTGATCGGAATCACGGCTATACACGGGATATCACGGGGTGTTAGCTCACATGTCCATATTGTCCGACAGAAGGGTTGTTTAATCGAAACTAATCCTTTGCCGCACGGAGGACGTGGAGCTCTGCCGTCTGAAGGCGGCAGCCCTTCCGATCTCCTCTTTCTCGCCGGTGGCGGTTCCAGCTTTAACTTCTTTTCCTTTAGGTTTTAGGAGTTAGGGTTTGTTAGTGTTTTTTCCTTCTTCTTTTTTTGGTGCTCTTGAATCGCTTTTTTCTTGGGGGAAGTTTTTTCTTTTGCTCTTCGAAATTTGTCTTTTTTGAGAATGTTGAAAATCAAAAGAGTTCCGACCGTTGTTTCGAACTACCAGAAGGACGATGGAGCGGAGGATCCCGTCGGCTGTGGACGGAATTGCCTCGGCGCTTGTTGCCTTAACGGGGCTAGGCTTCCATTGTATGCATGTAAGAATCTGGTAAAATCCGGAGAGAAGCTTGTAATCAGTCATGAGGCTATAGAGCCTCCTGTAGCTTTTCTCGAGTCCCTTGTTCTCGGAGAGTGGGAGGATAGGTTCCAAAGAGGACTTTTTCGCTATGATGTCACTGCCTGCGAAACCAAAGTTATCCCGGGGAAGTATGGTTTCGTTGCTCAGCTTAACGAGGGTCGTCACTTGAAGAAGAGGCCAACTGAGTTCCGTGTAGATAAGGTGTTGCAGTCTTTTGATGGCAGCAAATTCAACTTCACTAAAGTTGGCCAAGAAGAGTTGCTCTTCCAGTTTGAAGCTGGTGAAGATGCCCAAGTTCAGTTCTTCCCTTGCATGCCTATTGACCCTGAGAATTCTCCCAGTGTTGTTGCCATCAATGTTAGTCCGATAGAGTATGGCCATGTGCTGCTGATTCCTCGTGTTCTTGACTGCTTGCCTCAAAGGATCGATCACAAAAGCCTTTTGCTTGCAGTTCACATGGCTGCTGAGGCTGCTAATCCATACTTCAGACTCGGTTACAACAGCTTGGGTGCTTTTGCCACTATCAATCATCTCCACTTTCAGGCTTATTACTTGGCCATGCCTTTCCCACTGGAGAAAGCTCCTACCAAGAAGATAACTACCACTGTTAGTGGTGTCAAAATCTCAGAGCTTCTAAGTTACCCTGTGAGAAGTCTTCTCTTTGAAGGTGGAAGCTCTATGCAAGAACTATCTGATACTGTTTCAGACTGCTGTGTTTGCCTTCAAAACAACAACATTCCTTTCAACATTCTCATCTCTGATTGTGGAAGGCAGATCTTCTTAATGCCACAGTGTTACGCAGAGAAACAGGCTCTAGGTGAAGTGAGCCCGGAGGTATTGGAAACACAAGTGAACCCAGCCGTGTGGGAGATAAGTGGTCACATGGTACTGAAGAGGAAAGAGGATTACGAAGGTGCTTCAGAGGATAACGCGTGGAGGCTCCTTGCGGAAGCTTCTCTGTCGGAGGAAAGGTTTAAGGAGGTTACTGCTCTCGCCTTTGAAGCCATAGGTTGTAGTAACCAAGAGGAGGATCTTGAAGGAACCATAGTTCATCAGCAAAACTCTAGTGGCAATGTTAACCAGAAAAGCAACAGAACCCATGGAGGTCCGATCACAAATGGGACGGCCGCCGAGTGCCTTGTCCTTCAGTGAACAATATGGTGACTTGGTGGTTTGTATGTATAATTAAAAGCCTAAATAAGCAAACTCTCTTTGTAGTTGCATTTGAAGCTTCTTGGTTTATGTATGATGGTTGTGGGCATTTTGTGCCTAGACTTCTGGTTCTTTGTTTTTTGTTATGAGTTGGTGTTTATGAATTATATATGTTCTTCACTAATATGATTATTATTTGTATAGATTTGATTATTCAAAGGATATGTCTTAAGAAGGGGTTCAGGTTCAGCCAACTAATTACTTGTAACCAAGTCTTTCTACCATCAACAACCATGTTAAGATTCA
CDS Sequence
Protein Sequence