Gene Details:
- Gene ID: AT4G25480
- Gene Symbol: ATCBF3, CBF3, DREB1A
- Gene Name: C-REPEAT BINDING FACTOR 3, dehydration response element B1A
- Description: dehydration response element B1A;(source:Araport11)
- TAIR Accession: locus:2131849
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000013 — cauline leaf — hoja caulinar (Spanish, exact), 茎生葉、茎葉 (Japanese, exact)
- PO:0009001 — fruit — frucht (exact, German), fruto (exact, Spanish), 果実 (exact, Japanese), coenocarp (narrow), syncarp (narrow), aggregate fruit (broad), compound fruit (broad), dehiscent fruit (broad), diaspore (broad), indehiscent fruit (broad), multiple fruit (broad), propagule (broad)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009010 — seed — semilla (Spanish, exact), 種子 (Japanese, exact), pyrene (narrow), diaspore (broad)
- PO:0009032 — petal — pétalo (Spanish, exact), 花弁 (Japanese, exact)
- PO:0009047 — stem — caña (Spanish, exact), culm (exact), eje primario (Spanish, exact), primary axis (exact), primary stem (exact), tallo (Spanish, exact), tronco (Spanish, exact), 茎 (Japanese, exact), bole (narrow), cane (narrow), caudex (narrow), caudices (narrow), core (narrow), primocane (narrow), scape (narrow), stalk (narrow), trunk (narrow)
- PO:0009062 — gynoecium — ginoecio (Spanish, exact), gynaecium (exact), gynoecia (exact, plural), 雌蕊群 (Japanese, exact), Poaceae gynoecium (narrow), Zea gynoecium (narrow), apocarpous gynoecium (narrow), gynoecium of ear floret (narrow), gynoecium of lower floret of pedicellate spikelet of ear (narrow), gynoecium of lower floret of pedicellate spikelet of tassel (narrow), gynoecium of lower floret of sessile spikelet of ear (narrow), gynoecium of lower floret of sessile spikelet of tassel (narrow), gynoecium of tassel floret (narrow), gynoecium of upper floret of pedicellate spikelet of ear (narrow), gynoecium of upper floret of pedicellate spikelet of tassel (narrow), gynoecium of upper floret of sessile spikelet of ear (narrow), gynoecium of upper floret of sessile spikelet of tassel (narrow), syncarpous gynoecium (narrow), pistil (broad)
Gene Ontology:
- GO:0000976 — enables — transcription cis-regulatory region binding
- GO:0010628 — acts upstream of or within — positive regulation of gene expression
- GO:0006355 — involved in — regulation of DNA-templated transcription
- GO:0009414 — acts upstream of or within — response to water deprivation
- GO:0005515 — enables — protein binding
- GO:0003700 — enables — DNA-binding transcription factor activity
- GO:0005634 — located in — nucleus
- GO:0009631 — acts upstream of or within — cold acclimation
- GO:0009409 — acts upstream of or within — response to cold
- GO:0000987 — enables — cis-regulatory region sequence-specific DNA binding
Germplasm Phenotype:
- CS73345 — enhanced arsenite resistance; slight cadmium sensitivity
- CS73346 — enhanced arsenite resistance; slight cadmium sensitivity
- SAIL_244_D02 (homo) — Under FRc conditions, the length mutant hypocotyls is similar to that of wild-type plants. Under Rc conditions, the hypocotyl length is decreased and the cotyledon area is similar to that of wild type.
Function-related keywords:
- shoot axis apex , leaf lamina base , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , cauline leaf , fruit , root , seed , stamen , sepal , petal , stem , gynoecium , cotyledon , hypocotyl
Literature:
- The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. DOI: 10.1105/tpc.11.5.875 ; PMID: 10330472
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. DOI: 10.1105/tpc.13.1.61 ; PMID: 11158529
- An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. DOI: 10.1073/pnas.112040099 ; PMID: 12032361
- Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. DOI: 10.1105/tpc.003483 ; PMID: 12172015
- Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. DOI: 10.1104/pp.006478 ; PMID: 12376631
- OsDREB genes in rice, Oryza sativa L., encode transcription activators that and cold-responsive gene expression. DOI: 10.1046/j.1365-313x.2003.01661.x ; PMID: 12609047
- ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. DOI: 10.1101/gad.1077503 ; PMID: 12672693
- The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. DOI: 10.1046/j.1365-313x.2003.01734.x ; PMID: 12753580
- Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. DOI: 10.1105/tpc.015248 ; PMID: 14630965
- dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. DOI: 10.1111/j.1365-313x.2003.01998.x ; PMID: 14871311
- Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. DOI: 10.1111/j.1365-313X.2004.02100.x ; PMID: 15165189
- Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. DOI: 10.1023/B:PLAN.0000040902.06881.d4 ; PMID: 15356394
- Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. DOI: 10.1093/pcp/pch118 ; PMID: 15356330
- Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. DOI: 10.1104/pp.104.058354 ; PMID: 15728337
- The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. DOI: 10.1104/pp.105.068171 ; PMID: 16258011
- Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. DOI: 10.1007/s00299-005-0061-x ; PMID: 16231185
- Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. DOI: 10.1093/pcp/pci230 ; PMID: 16284406
- Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. DOI: 10.1105/tpc.105.035881 ; PMID: 16617101
- Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). DOI: 10.1007/s00425-006-0273-5 ; PMID: 16614820
- Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. DOI: 10.1111/j.1365-313X.2006.02994.x ; PMID: 17316173
- Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. DOI: 10.1111/j.1365-313X.2007.03034.x ; PMID: 17346263
- STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. DOI: 10.1104/pp.107.099895 ; PMID: 17556511
- Light-quality regulation of freezing tolerance in Arabidopsis thaliana. DOI: 10.1038/ng.2007.3 ; PMID: 17965713
- Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. DOI: 10.1073/pnas.0705639105 ; PMID: 18093929
- Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. DOI: 10.1111/j.1365-313X.2007.03399.x ; PMID: 18088305
- Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. DOI: 10.1007/s11103-008-9357-x ; PMID: 18523728
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. DOI: 10.1007/s00425-009-0920-8 ; PMID: 19363684
- Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. DOI: 10.1104/pp.109.135327 ; PMID: 19502356
- The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. DOI: 10.1093/mp/ssm009 ; PMID: 19802365
- Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance. DOI: 10.1371/journal.pone.0008690 ; PMID: 20084169
- HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. DOI: 10.1093/jxb/erq162 ; PMID: 20566565
- TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. DOI: 10.1104/pp.110.161182 ; PMID: 20639406
- Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. DOI: 10.1111/j.1469-8137.2010.03500.x ; PMID: 21039566
- ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. DOI: 10.1111/j.1365-313X.2011.04589.x ; PMID: 21447070
- A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana. DOI: 10.1371/journal.pone.0017603 ; PMID: 21408135
- Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. DOI: 10.1073/pnas.1103741108 ; PMID: 21471455
- WRKY transcription factors: key components in abscisic acid signalling. DOI: 10.1111/j.1467-7652.2011.00634.x ; PMID: 21696534
- Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. DOI: 10.1111/j.1467-7652.2011.00661.x ; PMID: 22070784
- Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. DOI: 10.1016/j.gene.2012.05.033 ; PMID: 22634104
- Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. DOI: 10.1073/pnas.1211295109 ; PMID: 22927419
- GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. DOI: 10.1007/s11103-013-0040-5 ; PMID: 23483290
- Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. DOI: 10.1007/s11103-013-0054-z ; PMID: 23625358
- Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. DOI: 10.1105/tpc.112.107292 ; PMID: 23792371
- Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. DOI: 10.1186/1471-2229-13-229 ; PMID: 24377444
- Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana. DOI: 10.1371/journal.pone.0079618 ; PMID: 24223981
- The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. DOI: 10.1104/pp.114.242404 ; PMID: 24834923
- Heterologous expression of Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) enhanced chilling tolerance in transgenic eggplant (Solanum melongena L.). DOI: 10.1007/s00299-014-1670-z ; PMID: 25103420
- An Arabidopsis gene regulatory network for secondary cell wall synthesis. DOI: 10.1038/nature14099 ; PMID: 25533953
- Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. DOI: 10.1016/j.plaphy.2014.11.011 ; PMID: 25461698
- Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. DOI: 10.1016/j.plantsci.2014.08.011 ; PMID: 25443829
- Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana. DOI: 10.1007/s00299-015-1746-4 ; PMID: 25627253
- Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. DOI: 10.1007/s00709-015-0769-6 ; PMID: 25643917
- Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. DOI: 10.1016/j.plaphy.2015.04.005 ; PMID: 25914135
- A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. DOI: 10.6026/97320630011101 ; PMID: 25848171
- Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. DOI: 10.1111/jpi.12262 ; PMID: 26182834
- The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. DOI: 10.1007/s11103-015-0365-3 ; PMID: 26311645
- Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. DOI: 10.1016/j.gene.2015.08.056 ; PMID: 26325072
- Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. DOI: 10.3389/fpls.2015.00810 ; PMID: 26483823
- RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. DOI: 10.1111/nph.13727 ; PMID: 26522658
- WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. DOI: 10.1007/s11103-016-0441-3 ; PMID: 26820136
- A cotton miRNA is involved in regulation of plant response to salt stress. DOI: 10.1038/srep19736 ; PMID: 26813144
- Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. DOI: 10.1016/j.plaphy.2016.01.018 ; PMID: 26828406
- Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis. DOI: 10.3390/plants2040769 ; PMID: 27137403
- Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature. DOI: 10.1105/tpc.16.00669 ; PMID: 28351986
- Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. DOI: 10.1093/nar/gkx417 ; PMID: 28510716
- Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. DOI: 10.1016/j.plaphy.2017.09.028 ; PMID: 29024849
- Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. DOI: 10.1104/pp.17.01448 ; PMID: 29382692
- Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. DOI: 10.1186/s12870-018-1255-z ; PMID: 29490615
- Arabidopsis PCaP2 Plays an Important Role in Chilling Tolerance and ABA Response and SnRK2-Mediated Transcriptional Regulatory Network. DOI: 10.3389/fpls.2018.00215 ; PMID: 29568301
- Influence of intergenotypic competition on multigenerational persistence of abiotic stress resistance transgenes in populations of Arabidopsis thaliana. DOI: 10.1111/eva.12610 ; PMID: 29928302
- MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. DOI: 10.1038/s41598-018-29722-x ; PMID: 30072714
- A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. DOI: 10.1111/tpj.14110 ; PMID: 30285298
- BYPASS1-LIKE, A DUF793 Family Protein, Participates in Freezing Tolerance via the CBF Pathway in Arabidopsis. DOI: 10.3389/fpls.2019.00807 ; PMID: 31297122
- A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. DOI: 10.3389/fpls.2019.00900 ; PMID: 31354770
- DREB1A/CBF3 Is Repressed by Transgene-Induced DNA Methylation in the Arabidopsis ice1 -1 Mutant. DOI: 10.1105/tpc.19.00532 ; PMID: 32034036
- DNA demethylase ROS1 prevents inheritable DREB1A/CBF3 repression by transgene-induced promoter methylation in the Arabidopsis ice1-1 mutant. DOI: 10.1007/s11103-020-01061-4 ; PMID: 33000386
- Varying Atmospheric CO(2) Mediates the Cold-Induced CBF-Dependent Signaling Pathway and Freezing Tolerance in Arabidopsis. DOI: 10.3390/ijms21207616 ; PMID: 33076265
- Arabidopsis thaliana Cuticle Composition Contributes to Differential Defense Response to Botrytis cinerea. DOI: 10.3389/fpls.2021.738949 ; PMID: 34804086
- An amiRNA screen uncovers redundant CBF and ERF34/35 transcription factors that differentially regulate arsenite and cadmium responses. DOI: 10.1111/pce.14023 ; PMID: 33554343
- The salt-activated CBF1/CBF2/CBF3-GALS1 module fine-tunes galactan-induced salt hypersensitivity in Arabidopsis. DOI: 10.1111/jipb.13501 ; PMID: 37149782
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. DOI: 10.1105/tpc.13.1.61 ; PMID: 11158529
- An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. DOI: 10.1007/s11103-005-1511-0 ; PMID: 16307362
- Genome-wide analysis of the ERF gene family in Arabidopsis and rice. DOI: 10.1104/pp.105.073783 ; PMID: 16407444
Sequences:
cDNA Sequence
- >AT4G25480.1
GCCACACATTCATACGCAAAGAGTTTATAAAACTCATAAAGGTATAATAATAACGAGTGAATAAGTCAAAAAAAGTCTTCTCTGGACACATGGCAGATCTTAATGAGTGAATCCTTAAACTACTCATTTTACAATTGCTTCGCTGTGTATAGTTTACGTGGCATTACCAGAGACACAAACTCCGTCTTCGCCTTTTCTTTTGCCTCTAAAATATCTTCCGCCATTATAAAACAGCATGCTCTCACTCCAACTTTTATTTATCTACAAACATTAAATCCACCTGAACTAGAACAGAAAGAGAGAGAAACTATTATTTCAGCAAACCATACCAACAAAAAAGACAGAGATCTTTTAGTTACCTTATCCAGTTTCTTGAAACAGAGTACTCTTCTGATCAATGAACTCATTTTCTGCTTTTTCTGAAATGTTTGGCTCCGATTACGAGTCTTCGGTTTCCTCAGGCGGTGATTATATTCCGACGCTTGCGAGCAGCTGCCCCAAGAAACCGGCGGGTCGTAAGAAGTTTCGTGAGACTCGTCACCCAATATACAGAGGAGTTCGTCGGAGAAACTCCGGTAAGTGGGTTTGTGAGGTTAGAGAACCAAACAAGAAAACAAGGATTTGGCTCGGAACATTTCAAACCGCTGAGATGGCAGCTCGAGCTCACGACGTTGCCGCTTTAGCCCTTCGTGGCCGATCAGCCTGTCTCAATTTCGCTGACTCGGCTTGGAGACTCCGAATCCCGGAATCAACTTGCGCTAAGGACATCCAAAAGGCGGCGGCTGAAGCTGCGTTGGCGTTTCAGGATGAGATGTGTGATGCGACGACGGATCATGGCTTCGACATGGAGGAGACGTTGGTGGAGGCTATTTACACGGCGGAACAGAGCGAAAATGCGTTTTATATGCACGATGAGGCGATGTTTGAGATGCCGAGTTTGTTGGCTAATATGGCAGAAGGGATGCTTTTGCCGCTTCCGTCCGTACAGTGGAATCATAATCATGAAGTCGACGGCGATGATGACGACGTATCGTTATGGAGTTATTAAAACTCAGATTATTATTTCCATTTTTAGTACGATACTTTTTATTTTATTATTATTTTTAGATCCTTTTTTAGAATGGAATCTTCATTATGTTTGTAAAACTGAGAAACGAGTGTAAATTAAATTGATTCAGTTTCAGTATAAGTGTGGGCTATTCTTAAATGCAAGTATTTTTAGAGCAGTAACAAAAAAATGTTGTTTAAATTAGAGTATAAAACCGAAACAACCGATTCAGCAAAACCTCCAATAATAGACCGTACACCATAAACAGAAATATGGGTCCCACAAGAGAGCACTGTCCGTAGCTTCCCCTTCATTGGCCCTCTACGTGGCTCCTCTTGTAACC
CDS Sequence
Protein Sequence