Gene Details:
- Gene ID: AT4G21990
- Gene Symbol: APR3, ATAPR3, PRH-26, PRH26
- Gene Name: APS reductase 3, PAPS REDUCTASE HOMOLOG 26
- Description: APS reductase 3;(source:Araport11)
- TAIR Accession: locus:2120628
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0025195 — pollen tube cell — célula del tubo polínico (Spanish, exact), 花粉管細胞 (Japanese, exact)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
Gene Ontology:
- GO:0009507 — located in — chloroplast
- GO:0000103 — acts upstream of or within — sulfate assimilation
- GO:0019379 — involved in — sulfate assimilation, phosphoadenylyl sulfate reduction by phosphoadenylyl-sulfate reductase (thioredoxin)
- GO:0005737 — located in — cytoplasm
- GO:0004604 — enables — phosphoadenylyl-sulfate reductase (thioredoxin) activity
- GO:0033741 — enables — adenylyl-sulfate reductase (glutathione) activity
- GO:0009973 — enables — adenylyl-sulfate reductase activity
Function-related keywords:
Literature:
- Light regulation of assimilatory sulphate reduction in Arabidopsis thaliana. DOI: 10.1046/j.1365-313x.1999.00573.x ; PMID: 10571863
- Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase. DOI: 10.1073/pnas.95.14.8404 ; PMID: 9653199
- Sulfate reduction in higher plants: molecular evidence for a novel 5'-adenylylsulfate reductase. DOI: 10.1073/pnas.93.23.13383 ; PMID: 8917600
- Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and "APS reductase" activity. DOI: 10.1073/pnas.93.23.13377 ; PMID: 8917599
- Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa. DOI: 10.1046/j.1365-313x.2002.01477.x ; PMID: 12492831
- Toxicity of free proline revealed in an arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. DOI: 10.1093/pcp/pcg066 ; PMID: 12773641
- Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. DOI: 10.1074/jbc.M308435200 ; PMID: 14576160
- Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. DOI: 10.1104/pp.104.039909 ; PMID: 15247402
- The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. DOI: 10.1104/pp.104.046482 ; PMID: 15347784
- Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. DOI: 10.1104/pp.104.056507 ; PMID: 15684019
- Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. DOI: 10.1111/j.1365-313X.2005.02363.x ; PMID: 15842617
- Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. DOI: 10.1074/jbc.M500694200 ; PMID: 15824099
- Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. DOI: 10.1104/pp.105.068684 ; PMID: 16244144
- Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. DOI: 10.1007/s11120-005-7386-8 ; PMID: 16307302
- Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2005.02587.x ; PMID: 16297073
- Evolution of redoxin genes in the green lineage. DOI: 10.1007/s11120-006-9095-3 ; PMID: 17031546
- Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. DOI: 10.1104/pp.106.090662 ; PMID: 17189325
- PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. DOI: 10.1105/tpc.106.047407 ; PMID: 17337631
- MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. DOI: 10.1105/tpc.106.048017 ; PMID: 17616737
- Complex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots. DOI: 10.1104/pp.107.113175 ; PMID: 18218969
- Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. DOI: 10.1104/pp.107.110742 ; PMID: 18178671
- Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. DOI: 10.1186/1471-2229-8-87 ; PMID: 18684332
- Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. DOI: 10.1104/pp.108.126375 ; PMID: 18775970
- An inversion identified in acl1-1 mutant functions as an enhancer of the acl1-1 phenotype. DOI: 10.1266/ggs.83.293 ; PMID: 18931455
- Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2009.04118.x ; PMID: 20042022
- The key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. DOI: 10.1111/j.1365-313X.2011.04656.x ; PMID: 21623972
- The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis. DOI: 10.1093/pcp/pcu166 ; PMID: 25416292
- Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. DOI: 10.1371/journal.pone.0001994 ; PMID: 18431481
- The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. DOI: 10.1104/pp.108.117523 ; PMID: 18467450
Sequences:
cDNA Sequence
- >AT4G21990.2
AATGATATATAGAAAAGCAAATGCCGCCACCTAAAAAAAGACAGAACACAAAATTAGAAAAAACACAACACAAAAATAAAAAAAACTTAAGAACATTGTTTCGAGAGATTTGGTTTGGAGTGAAAATGGCACTAGCAATCAACGTTTCTTCATCTTCTTCTTCTGCGATCTCAAGCTCTAGCTTCCCTTCTTCAGATCTCAAAGTAACAAAAATCGGATCATTGAGGTTATTGAATCGTACCAATGTCTCTGCGGCTTCTCTGAGTTTGTCCGGGAAGAGATCCTCCGTGAAAGCTCTTAATGTGCAATCAATTACAAAGGAATCCATTGTTGCTTCTGAGGTTACAGAGAAGCTAGATGTGGTGGAAGTTGAAGACTTTGAGGAACTAGCAAAGAGATTAGAGAATGCTTCTCCTCTTGAGATCATGGATAAAGCTCTTGAGAAGTTTGGGAATGACATTGCTATTGCCTTTAGTGGAGCTGAAGATGTTGCTCTGATTGAGTATGCTCATTTAACTGGAAGACCTTATAGGGTATTCAGTTTGGATACAGGGAGATTGAATCCAGAAACATATAGACTCTTCGATACCGTGGAGAAACATTACGGTATTCGGATTGAGTATATGTTTCCTGATGCTGTTGAGGTTCAAGCTTTAGTTAGGAACAAGGGTTTGTTCTCTTTCTATGAAGATGGTCACCAGGAGTGTTGCCGTATTAGAAAGGTGAGACCTTTGAGGCGTGCGTTGAAGGGTTTACGTGCTTGGATCACTGGTCAGAGGAAAGATCAATCACCCGGGACAAGATCGGAGATTCCTGTTGTTCAGGTTGATCCAGTGTTTGAAGGATTAGATGGTGGAGTTGGTAGTTTGGTGAAGTGGAATCCGGTTGCTAATGTTGAAGGGAATGATGTTTGGAATTTCTTGAGGACGATGGATGTTCCTGTCAACACGCTTCACGCTGCGGGTTATGTTTCAATCGGATGTGAGCCATGCACGAGAGCGGTTTTGCCGGGTCAGCATGAGAGAGAAGGGAGATGGGATTGAGAATTTGATGAAGTTAGAGAACCGGAAAGAGGCTTGGATCGTTGTGCTTTATGCACCGTGGTGCCCGTTTTGTCAGGCAATGGAAGCTTCATTCGATGAATTGGCGGATAAGCTGGGAGGAAGTGGTGTGAAGGTTGCTAAGTTTAGAGCTGATGGTGACCAGAAGGACTTTGCCAAAAAGGAGTTGCAGCTTGGAAGCTTTCCAACAATACTTGTGTTCCCAAAGAACTCTTCAAGACCAATCAAGTATCCATCAGAGAAGAGAGATGTTGATTCTTTGACATCTTTCTTGAATCTTGTTCGGTAAATCCGCAATAAAATCCGCCGACTCTACGATGACGAAGAGATCAATAATAGACCATCCAGTCTCGTTCCAGATTGCTAGAACAGATGAAGAAGGTGAAGATGAGAATCTCTATTTGGAGCTTTAGCCTTTTGTATAGCTGTGGTTAAAAATAATTACGCCAAGGTTTTGCCTTTTGTGAGTTTATTTTTACCAATTTTCAGTGTATTACTCCTTTTTTGCCTTTGTGATGGATATGAACAAGTTTGATATGAAAGTGACTCATTACTCATTAGCCCC - >AT4G21990.1
AATGATATATAGAAAAGCAAATGCCGCCACCTAAAAAAAGACAGAACACAAAATTAGAAAAAACACAACACAAAAATAAAAAAAACTTAAGAACATTGTTTCGAGAGATTTGGTTTGGAGTGAAAATGGCACTAGCAATCAACGTTTCTTCATCTTCTTCTTCTGCGATCTCAAGCTCTAGCTTCCCTTCTTCAGATCTCAAAGTAACAAAAATCGGATCATTGAGGTTATTGAATCGTACCAATGTCTCTGCGGCTTCTCTGAGTTTGTCCGGGAAGAGATCCTCCGTGAAAGCTCTTAATGTGCAATCAATTACAAAGGAATCCATTGTTGCTTCTGAGGTTACAGAGAAGCTAGATGTGGTGGAAGTTGAAGACTTTGAGGAACTAGCAAAGAGATTAGAGAATGCTTCTCCTCTTGAGATCATGGATAAAGCTCTTGAGAAGTTTGGGAATGACATTGCTATTGCCTTTAGTGGAGCTGAAGATGTTGCTCTGATTGAGTATGCTCATTTAACTGGAAGACCTTATAGGGTATTCAGTTTGGATACAGGGAGATTGAATCCAGAAACATATAGACTCTTCGATACCGTGGAGAAACATTACGGTATTCGGATTGAGTATATGTTTCCTGATGCTGTTGAGGTTCAAGCTTTAGTTAGGAACAAGGGTTTGTTCTCTTTCTATGAAGATGGTCACCAGGAGTGTTGCCGTATTAGAAAGGTGAGACCTTTGAGGCGTGCGTTGAAGGGTTTACGTGCTTGGATCACTGGTCAGAGGAAAGATCAATCACCCGGGACAAGATCGGAGATTCCTGTTGTTCAGGTTGATCCAGTGTTTGAAGGATTAGATGGTGGAGTTGGTAGTTTGGTGAAGTGGAATCCGGTTGCTAATGTTGAAGGGAATGATGTTTGGAATTTCTTGAGGACGATGGATGTTCCTGTCAACACGCTTCACGCTGCGGGTTATGTTTCAATCGGATGTGAGCCATGCACGAGAGCGGTTTTGCCGGGTCAGCATGAGAGAGAAGGGAGATGGGATTGAGAATTTGATGAAGTTAGAGAACCGGAAAGAGGCTTGGATCGTTGTGCTTTATGCACCGTGGTGCCCGTTTTGTCAGGCAATGGAAGCTTCATTCGATGAATTGGCGGATAAGCTGGGAGGAAGTGGTGTGAAGGTTGCTAAGTTTAGAGCTGATGGTGACCAGAAGGACTTTGCCAAAAAGGAGTTGCAGCTTGGAAGCTTTCCAACAATACTTGTGTTCCCAAAGAACTCTTCAAGACCAATCAAGTATCCATCAGAGAAGAGAGATGTTGATTCTTTGACATCTTTCTTGAATCTTGTTCGGTAAATCCGCAATAAAATCCGCCGACTCTACGATGACGAAGAGATCAATAATAGACCATCCAGTCTCGTTCCAGATTGCTAGAACAGATGAAGAAGGTGAAGATGAGAATCTCTATTTGGAGCTTTAGCCTTTTGTATAGCTGTGGTTAAAAATAATTACGCCAAGGTTTTGCCTTTTGTGAGTTTATTTTTACCAATTTTCAGTGTATTACTCCTTTTTTGCCTTTGTGATGGATATGAACAAGTTTGATATGAAAGTGACTCATTACTCATTAGCCCC
CDS Sequence
Protein Sequence