Gene Details:
- Gene ID: AT4G21650
- Gene Symbol: SBT3.13
- Gene Name: subtilase 3.13
- Description: Subtilase family protein;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0005020 — vascular bundle — haz vascular (Spanish, exact), vein (exact), 維管束 (Japanese, exact)
Function-related keywords:
Literature:
- Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. DOI: 10.1242/jcs.00715 ; PMID: 12953064
- The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. DOI: 10.1016/j.phytochem.2003.09.005 ; PMID: 14697270
- When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. DOI: 10.1104/pp.103.033431 ; PMID: 15047901
- Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. DOI: 10.1104/pp.103.034736 ; PMID: 15047898
- Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. DOI: 10.1093/pcp/pch083 ; PMID: 15215506
- Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. DOI: 10.1111/j.1365-313X.2004.02156.x ; PMID: 15272873
- Evaluation of two-dimensional electrophoresis and liquid chromatography–tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. DOI: 10.1002/elps.200410399 ; PMID: 15971193
- Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family. DOI: 10.1371/journal.pcbi.0010040 ; PMID: 16193095
- Cross genome comparisons of serine proteases in Arabidopsis and rice. DOI: 10.1186/1471-2164-7-200 ; PMID: 16895613
- Core genome responses involved in acclimation to high temperature. DOI: 10.1104/pp.107.112060 ; PMID: 18055584
- Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. DOI: 10.1186/1471-2229-8-91 ; PMID: 18783601
- A proteomics approach identifies novel proteins involved in gravitropic signal transduction. DOI: 10.3732/ajb.1200339 ; PMID: 23281391
- Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. DOI: 10.1038/nature13452 ; PMID: 25043023
- Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. DOI: 10.3389/fpls.2015.00315 ; PMID: 26029221
- Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. DOI: 10.1093/jxb/erw365 ; PMID: 27707774
- Evaluation of two-dimensional electrophoresis and liquid chromatography–tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. DOI: 10.1002/elps.200410399 ; PMID: 15971193
- A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. DOI: 10.1093/jxb/erm082 ; PMID: 17526915
Sequences:
cDNA Sequence
- >AT4G21650.1
GAAAGATGAATAATAGATGAATTATTTACTATATATACAACCATAGAGGCTTCTATGCCACCACACACTTCTCACTTAAGAAAATGAATAACTCTTTACAAAGTTCTAAACTTGTGCTTCTATTGGCTATTGCTTTGGTCCTATTTCTTAACACGGAGCTGGATTTTCTTACAGCTGCTGGAGCCTTAGACAGTGATAGCAAAGTTTATATAGTGTATCTTGGCGAAAGAGAACACGATGATCCTGAACTTGTCACAGCTTCTCATCACCAGATGCTTGAATCACTTCTTCAAAGCAAAGAAGACGCACAAAACTCCCTGATCTACAGCTACCAACATGGATTCTCTGGTTTCGCGGCGCTTCTTACATCATCACAAGCTAAGAAAATTTCAGAGCATCCAGAAGTTATCCATGTTATACCAAACCGGATTCGGAAACTTAAAACCACAAGAGCTTGGGATCACCTTGGCCTCTCTCCAATTCCAACTTCTTTTTCTTCATTATCATCTGTAAAAGGTCTTCTTCATGACACCAACTTGGGCAGTGAAGCTATCATCGGTGTCATTGATTCCGGGATATGGCCAGAGTCAAAGGCAGTCAACGATCAAGGCCTTGGACCAATACCTAAGCGTTGGAGAGGAAAATGTGAACCTGGAGAACAGTTTAACGCCACAATACATTGCAACAACAAGCTAATAGGAGCTAGGTACTATCTAAACGGTGTAGTCGCCGCAATTGGAGGAAAATTCAACAGAACAATCATCCAAGATTTCCAATCCACCAGAGATGCAAACGGTCACGGTACACATACAGCCACAATAGCTGGTGGCTCATTTGTCCCCAACGTGAGCTACTTTGGTTTAGCCCAAGGTCTTGTCCGAGGTGGTGCTCCTCGAGCCCGAATAGCCTCGTACAAGGCGTGTTGGAACGTAATGAGAGATGAAGGAGGAGGAACTGATGGAAGATGCACATCTGCTGATATGTGGAAGGCTTTTGATGATGCTATACATGATGGGGTTGATGTTTTGTCGGTTTCTATCGGGGGAGGTATTCCCGAGGATTCGGAAGTCGATAAGCTCGATTATATCGCGGCTTTTCACGCGGTGGCTAAAGGGATTACGGTTGTGGCTGCTGCGGGTAACGAAGGGCCTGGTGCTCACACTGTTGACAATGTTGCTCCTTGGCTTTTGACTGTTGCTGCAACTACTCTTGACCGGTCTTTTCCTACAAAGATCACACTTGGGAATAATCAAACCCTCTTCGCTGAATCTCTGTTCACTGGACCGGAGATTTCAACCGGTTTAGCTTTCTTGGACTCAGACAGTGATGACACTGTTGATGTGAAGGGGAAAACAGTTCTTGTTTTCGATAGTGCAACTCCAATTGCAGGGAAAGGTGTAGCAGCAGTGATCCTAGCCCAAAAGCCTGATGATCTTCTTTCTCGATGCAATGGTGTACCATGCATTTTTCCAGATTACGAGTTTGGAACTGAGATTTTAAAATACATACGTACCACCAGATCTCCCACGGTGAGAATTACTGCAGCTACTACACTAACTGGTCAGCCTGCAACAACTAAGGTTGCTGCATTCTCATGTAGAGGGCCTAATTCGGTTTCACCAGCCATTCTCAAGCCTGATATAGCAGCTCCGGGTGTGAGCATACTCGCGGCAATAAGTCCGCTTAATCCAGAAGAACAGAACGGATTTGGACTTCTTTCAGGGACATCAATGTCAACTCCTGTTGTTTCTGGAATAATAGCTCTCCTAAAATCTCTTCACCCTAAGTGGTCTCCTGCTGCAGTGAGATCAGCTTTGGTCACAACAGCTTGGAGGACAAGTCCATCTGGAGAACCAATCTTTGCTGAAGGATCAAACAAGAAGCTTGCAGATCCATTTGACTATGGAGGAGGACTTGTAAACCCTGAAAAAGCTGCTAAACCAGGACTTGTCTACGATATGGGGATTGTGGATTACATCAAGTATATGTGTTCTGCGGGTTACAACGACTCTTCAATCTCTCGTGTGCTCGGTAAAAAGACTAATTGCCCAATTCCTAAGCCATCAATGCTTGATATCAACTTACCTTCAATCACAATTCCAAATCTTGAGAAAGAAGTCACACTCACAAGAACTGTAACCAATGTTGGACCCATCAAGTCAGTCTATAGAGCTGTGATCGAGTCTCCTCTCGGTATAACTCTCACCGTGAACCCAACCACACTCGTGTTTAAGTCTGCAGCTAAGAGAGTACTCACTTTCTCGGTTAAGGCTAAAACAAGTCACAAAGTCAACACTGGCTACTTCTTTGGAAGCTTAACATGGAGTGATGGTGTTCATGATGTTATAATCCCTGTCTCTGTTAAGACAACGATTTCGATGTAATAAAAAGAGCCATATGATGCTCATTGTGTTTGTTCTTATGTAATTTGTTGCAAATCTAAGTCTAAAATGTCAAATCAAGATTCAAGATCATCATAATAAAAGATCAAATCACAAATACCTTAGAATCTCTTATAAAAGATCATGATCATAAC
CDS Sequence
Protein Sequence