Information report for AT4G16780
Gene Details
|
|
Functional Descriptions
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- GO:0048364 — acts upstream of or within — root development
- GO:0005515 — enables — protein binding
- GO:0045892 — acts upstream of or within — negative regulation of DNA-templated transcription
- GO:0009735 — acts upstream of or within — response to cytokinin
- GO:0009641 — acts upstream of or within — shade avoidance
- GO:0043565 — enables — sequence-specific DNA binding
- GO:0010017 — acts upstream of or within — red or far-red light signaling pathway
- GO:0005634 — located in — nucleus
- GO:0010218 — acts upstream of or within — response to far red light
- GO:0010016 — acts upstream of or within — shoot system morphogenesis
- GO:0009733 — acts upstream of or within — response to auxin
- GO:0009826 — acts upstream of or within — unidimensional cell growth
- GO:0080191 — acts upstream of or within — secondary thickening
- GO:0010311 — acts upstream of or within — lateral root formation
- GO:0042803 — enables — protein homodimerization activity
- GO:0000981 — enables — DNA-binding transcription factor activity, RNA polymerase II-specific
- GO:0003700 — enables — DNA-binding transcription factor activity
Functional Keywords
Literature and News
- The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. DOI: 10.1046/j.1365-313x.1996.10030393.x ; PMID: 8811855
- Expression patterns of novel genes encoding homeodomain leucine-zipper proteins in Arabidopsis thaliana. DOI: 10.1007/BF00039527 ; PMID: 7948864
- Structure of homeobox-leucine zipper genes suggests a model for the evolution of gene families. DOI: 10.1073/pnas.91.18.8393 ; PMID: 7915839
- The Arabidopsis Athb-2 and -4 genes are strongly induced by far-red-rich light. DOI: 10.1046/j.1365-313x.1993.04030469.x ; PMID: 8106086
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. DOI: 10.1104/pp.102.015487 ; PMID: 12644683
- High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. DOI: 10.1111/j.1365-313X.2004.02281.x ; PMID: 15610358
- Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. DOI: 10.1111/j.1365-313X.2005.02530.x ; PMID: 16212609
- Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. DOI: 10.1104/pp.105.076331 ; PMID: 16565297
- Light-quality regulation of freezing tolerance in Arabidopsis thaliana. DOI: 10.1038/ng.2007.3 ; PMID: 17965713
- The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. DOI: 10.1007/s11103-008-9383-8 ; PMID: 18758690
- Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. DOI: 10.1093/pcp/pcr076 ; PMID: 21666227
- The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. DOI: 10.1111/j.1365-313X.2012.04935.x ; PMID: 22321262
- ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. DOI: 10.4161/psb.21824 ; PMID: 22918502
- Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function. DOI: 10.1242/dev.092833 ; PMID: 23578926
- Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development. DOI: 10.4161/psb.25447 ; PMID: 23838958
- Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. DOI: 10.1186/1471-2229-13-229 ; PMID: 24377444
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense. DOI: 10.3389/fpls.2016.01010 ; PMID: 27462337
- YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. DOI: 10.7717/peerj.2574 ; PMID: 27761349
- A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina. DOI: 10.1111/mec.14107 ; PMID: 28316114
- Arabidopsis RSS1 Mediates Cross-Talk Between Glucose and Light Signaling During Hypocotyl Elongation Growth. DOI: 10.1038/s41598-017-16239-y ; PMID: 29170398
- Arabidopsis HD-Zip II proteins regulate the exit from proliferation during leaf development in canopy shade. DOI: 10.1093/jxb/ery331 ; PMID: 30239874
- ATHB2 is a negative regulator of germination in Arabidopsis thaliana seeds. DOI: 10.1038/s41598-021-88874-5 ; PMID: 33958633
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. DOI: 10.1126/science.290.5499.2105 ; PMID: 11118137
- Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. DOI: 10.1111/j.1365-313X.2005.02530.x ; PMID: 16212609
Gene Resources
Sequences
cDNA Sequence
- >AT4G16780.1
TGCCCCCAGCTAGTCACATACTCATGATTGCAAAATCTCTCTCTCTCTCTGCCTCTCTATATATTAACCTTTCTTCTTCCTTTACTTTCTCATCTTCTATCTCTCAAAAGAAAAGCAGACAACTTTATTTGCAAAAACAGAGTTTTTTTTTCTTATCTTGAGAAAGTTCAACAGAAGATGATGTTCGAGAAAGACGATCTGGGTCTAAGCTTAGGCTTGAATTTTCCAAAGAAACAGATCAATCTCAAATCAAATCCATCTGTTTCTGTTACTCCTTCTTCTTCTTCTTTTGGATTATTCAGAAGATCTTCATGGAACGAGAGTTTTACTTCTTCAGTTCCAAACTCAGATTCGTCACAAAAAGAAACAAGAACTTTCATCCGAGGAATCGACGTGAACAGACCACCGTCTACAGCGGAATACGGCGACGAAGACGCTGGAGTATCTTCACCTAACAGTACAGTCTCAAGCTCTACAGGGAAAAGAAGCGAGAGAGAAGAAGACACAGATCCACAAGGCTCAAGAGGAATCAGTGACGATGAAGATGGTGATAACTCCAGGAAAAAGCTTAGACTTTCCAAAGATCAATCTGCTATTCTTGAAGAGACCTTCAAAGATCACAGTACTCTCAATCCGAAGCAGAAGCAAGCATTGGCTAAACAATTAGGGTTACGAGCAAGACAAGTGGAAGTTTGGTTTCAGAACAGACGAGCAAGAACAAAGCTGAAGCAAACGGAGGTAGACTGCGAGTTCTTACGGAGATGCTGCGAGAATCTAACGGAAGAGAACCGTCGGCTACAAAAAGAAGTAACGGAATTGAGAGCACTTAAGCTCTCTCCTCAGTTCTACATGCACATGAGCCCACCCACTACTTTGACCATGTGCCCTTCATGTGAACACGTGTCGGTCCCGCCACCACAACCTCAGGCTGCTACGTCAGCGCACCACCGGTCGTTGCCGGTCAATGCGTGGGCTCCTGCGACGAGGATATCTCACGGCTTGACTTTTGACGCTCTTCGTCCTAGGTCCTAAGTCTTTTTACTTGCAACCAAAGGGCATTTTGGTCGTTTTTTAAGTTTCATGGACCAGATATGCATGTAGTTGTTAACATGTATGTATTTTCTTAGAAAGAAAGAAAAACAGATTAATATTTTTCTAGCTTAAACCAACATATATGTGTCATGCTAACAAGTAACAACAAATATTTAGAGCCAATGCTATCAGATATTATGACTTTGAAATCATTTTGTTTTGTTTTGTTGCAATAAATATTTTGGACAAAACTATCACAAGAAACTTTATTGCAATAATATTTATAGTGTCTAGCGAGTAG
CDS Sequence
Protein Sequence