Gene Details:
- Gene ID: AT3G29320
- Gene Symbol: PHS1
- Gene Name: alpha-glucan phosphorylase 1
- Description: Glycosyl transferase, family 35;(source:Araport11)
- TAIR Accession: locus:2093787
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
Gene Ontology:
- GO:0009536 — located in — plastid
- GO:0030170 — enables — pyridoxal phosphate binding
- GO:0005737 — is active in — cytoplasm
- GO:0009507 — located in — chloroplast
- GO:0009414 — acts upstream of or within — response to water deprivation
- GO:0005829 — located in — cytosol
- GO:0009570 — located in — chloroplast stroma
- GO:0102250 — enables — linear malto-oligosaccharide phosphorylase activity
- GO:0102499 — enables — SHG alpha-glucan phosphorylase activity
- GO:0004645 — enables — 1,4-alpha-oligoglucan phosphorylase activity
- GO:0008184 — enables — glycogen phosphorylase activity
- GO:0005980 — involved in — glycogen catabolic process
- GO:0009266 — acts upstream of or within — response to temperature stimulus
- GO:0016757 — enables — glycosyltransferase activity
Germplasm Phenotype:
- atphs1-1 — The leaves of mature mutant plants consistently had small, white lesions on the tips or margins of fully expanded leaves. The lesions did not increase in size after appearance and were not bordered by chlorotic tissue. The frequency and severity of lesions varied between batches of plants, but lesion-free mutant plants were rare. Further examination of the lesions on leaves of the mutant plants revealed that high levels of starch were present in the living cells bordering each lesion at the end of the night, when the rest of the leaf had metabolized its starch. This starch accumulation occurred in a highly cell-specific manner with adjacent starch-rich and starch-free cells.
- atphs1-2 — The average midday activity of hexokinase (HXK) was 20% higher in the mutant leaves, statistically significant at the P = 0.1 level of confidence.
- atphs1-2 — The leaves of mature mutant plants consistently had small, white lesions on the tips or margins of fully expanded leaves. The lesions did not increase in size after appearance and were not bordered by chlorotic tissue. The frequency and severity of lesions varied between batches of plants, but lesion-free mutant plants were rare. Further examination of the lesions on leaves of the mutant plants revealed that high levels of starch were present in the living cells bordering each lesion at the end of the night, when the rest of the leaf had metabolized its starch. This starch accumulation occurred in a highly cell-specific manner with adjacent starch-rich and starch-free cells.
- atphs1-2 — The midday and midnight activities of DPE1, DPE2, β-amylase, and phosphoglucomutase (PGM) were not changed in the atphs2-1 leaves relative to wild-type leaves.
Function-related keywords:
- shoot axis apex , leaf lamina base , root , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , guard cell
Literature:
- Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. DOI: 10.1074/jbc.M308435200 ; PMID: 14576160
- Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. DOI: 10.1002/rcm.1376 ; PMID: 15052571
- Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. DOI: 10.1104/pp.104.044347 ; PMID: 15347792
- Leaf starch degradation comes out of the shadows. DOI: 10.1016/j.tplants.2005.01.001 ; PMID: 15749471
- Starch degradation. DOI: 10.1146/annurev.arplant.56.032604.144257 ; PMID: 15862090
- Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. DOI: 10.1111/j.1365-313X.2005.02462.x ; PMID: 16045475
- Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast. DOI: 10.1111/j.1365-313X.2005.02475.x ; PMID: 16098110
- Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters. DOI: 10.1111/j.1365-3040.2006.01543.x ; PMID: 16913860
- The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. DOI: 10.1111/j.1365-313X.2006.02968.x ; PMID: 17217470
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. DOI: 10.1104/pp.108.124545 ; PMID: 18633119
- Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. DOI: 10.1186/1471-2229-8-76 ; PMID: 18616834
- Arabidopsis At5g39790 encodes a chloroplast-localized, carbohydrate-binding, coiled-coil domain-containing putative scaffold protein. DOI: 10.1186/1471-2229-8-120 ; PMID: 19038037
- Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. DOI: 10.1093/molbev/msq204 ; PMID: 20736450
- Starch metabolism in Arabidopsis. DOI: 10.1199/tab.0160 ; PMID: 23393426
- Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism. DOI: 10.1104/pp.113.227843 ; PMID: 24302650
- Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana. DOI: 10.1007/s11103-015-0293-2 ; PMID: 25663508
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- Starch Synthase 4 and Plastidal Phosphorylase Differentially Affect Starch Granule Number and Morphology. DOI: 10.1104/pp.16.01859 ; PMID: 28275148
- Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation. DOI: 10.1371/journal.pone.0187985 ; PMID: 29155859
- Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background. DOI: 10.1016/j.plaphy.2022.03.033 ; PMID: 35378390
- LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes. DOI: 10.1111/tpj.15855 ; PMID: 35665549
- Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling. DOI: 10.3389/fpls.2022.1039534 ; PMID: 36407636
- The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. DOI: 10.1016/j.cub.2004.02.039 ; PMID: 15028209
- Starch degradation. DOI: 10.1146/annurev.arplant.56.032604.144257 ; PMID: 15862090
- Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters. DOI: 10.1111/j.1365-3040.2006.01543.x ; PMID: 16913860
- Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. DOI: 10.1371/journal.pone.0001994 ; PMID: 18431481
- Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. DOI: 10.1104/pp.108.124545 ; PMID: 18633119
- The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. DOI: 10.1074/mcp.M500180-MCP200 ; PMID: 16207701
- Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. DOI: 10.1021/pr1009433 ; PMID: 21166475
- Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. DOI: 10.1016/j.jprot.2017.06.004 ; PMID: 28627464
Sequences:
cDNA Sequence
- >AT3G29320.1
TGAAACTGAAAAAAAGCTTGAACACTCCATTGTTCTCTACTCTACCACTATCTCACAGAGATTCATGGATACGATGCGAATCTCCGGTGTATCAACCGGAGCTGAGGTTTTAATACAATGCAATTCCTTATCAAGCCTCGTTTCTCGTCGTTGCGACGACGGAAAATGGCGAACGAGAATGTTTCCGGCGAGAAACAGAGACTTGCGTCCATCGCCGACGAGAAGATCCTTTTTGTCGGTGAAATCTATCTCTAGCGAACCGAAAGCCAAAGTAACCGACGCAGTTCTCGATTCCGAACAAGAAGTGTTTATTAGCTCGATGAATCCGTTTGCGCCAGATGCTGCTTCGGTAGCTTCGAGTATCAAGTACCACGCGGAGTTTACGCCATTGTTTTCACCGGAGAAGTTTGAGTTGCCAAAGGCGTTCTTTGCGACTGCGCAAAGTGTTAGAGATGCTTTGATCATGAATTGGAATGCAACTTATGAGTATTACAACAGAGTGAATGTGAAACAAGCGTATTATTTGTCAATGGAGTTTTTGCAGGGTAGAGCCTTATCGAATGCCGTGGGTAACCTTGGGCTTAATAGCGCTTATGGTGATGCTTTGAAGAGGCTTGGTTTTGATTTGGAAAGCGTGGCTAGTCAGGAGCCAGATCCTGCACTTGGGAATGGTGGACTCGGGAGACTTGCCTCGTGTTTTTTGGATTCCATGGCAACTTTGAATTATCCGGCTTGGGGTTATGGACTTAGATACAAGTATGGCTTGTTCAAACAGAGAATTACAAAAGATGGACAGGAGGAAGCTGCAGAAGATTGGCTTGAGCTAAGCAATCCTTGGGAAATAGTCAGAAATGATGTCTCATATCCTATTAAGTTCTATGGGAAAGTGGTTTTTGGATCAGATGGTAAGAAACGGTGGATTGGTGGAGAAGACATTGTTGCTGTTGCTTATGATGTTCCTATACCTGGTTATAAAACTAAGACAACTATCAATCTGCGGCTCTGGTCAACAAAAGCTCCTTCCGAAGATTTTGATTTATCTTCATATAACTCTGGGAAGCATACTGAGGCAGCAGAAGCTCTATTCAACGCTGAAAAGATTTGCTTCGTGCTTTACCCCGGAGATGAGTCAACTGAAGGAAAGGCTCTTCGTCTGAAGCAACAATACACTCTGTGCTCAGCCTCGCTACAAGATATCGTAGCACGTTTTGAGACAAGGTCTGGAGGAAACGTCAACTGGGAAGAATTTCCAGAGAAGGTTGCAGTGCAGATGAATGACACTCACCCTACCCTATGCATTCCTGAGCTAATGAGGATTCTAATGGATTTAAAAGGACTAAGCTGGGAAGACGCTTGGAAAATCACACAAAGGACTGTGGCATACACAAACCATACAGTCTTGCCTGAGGCACTGGAGAAGTGGAGTTTAGAACTCATGGAGAAATTGCTTCCTCGTCATGTGGAGATTATCGAAAAGATTGATGAGGAGCTAGTTCGCACAATTGTTTCAGAGTATGGCACCGCGGATCCTGACTTACTTGAAGAAAAACTGAAGGCAATGAGGATCTTGGAAAATGTCGAGTTGCCTTCTGCCTTTGCAGATGTGATCGTGAAGCCGGTGAACAAACCAGTTACTGCAAAAGATGCTCAAAATGGCGTGAAAACGGAACAAGAAGAGGAAAAAACTGCTGGAGAGGAAGAGGAAGACGAAGTTATCCCAGAACCAACAGTAGAACCCCCCAAGATGGTCCGTATGGCCAACCTTGCTGTTGTGGGTGGTCATGCTGTAAATGGCGTTGCAGAGATACACAGTGAAATAGTGAAGCAGGACGTGTTTAATGATTTCGTACAGTTGTGGCCAGAAAAATTTCAGAACAAAACAAATGGAGTAACACCAAGGCGATGGATTCGTTTTTGCAACCCATATTTAAGTGATATTATAACTAACTGGATAGGCACAGAAGACTGGGTCTTAAATACCGAAAAGGTTGCGGAACTAAGAAAGTTTGCAGATAATGAAGATCTCCAATCTGAGTGGAGGGCAGCAAAGAAGAAGAACAAGTTGAAGGTTGTATCACTTATCAAGGAAAGAACTGGATATACTGTCAGCCCCGATGCAATGTTCGACATTCAGATCAAGCGTATACATGAGTACAAGCGACAACTGCTAAATATCTTGGGAATTGTTTACCGCTACAAAAAGATGAAGGAAATGAGTGCTAGTGAGAGAGAGAAAGCATTTGTTCCAAGAGTTTGCATATTTGGGGGAAAAGCATTTGCCACATATGTGCAAGCTAAGAGAATTGTTAAATTTATCACAGATGTTGCGTCTACAATTAACCATGATCCAGAAATAGGTGACCTCCTTAAGGTTATCTTTGTTCCTGATTACAATGTCAGTGTTGCTGAATTGCTCATTCCAGCAAGTGAGCTTTCTCAGCACATCAGTACTGCTGGGATGGAAGCTAGTGGGACAAGCAACATGAAATTTTCGATGAACGGTTGCGTTTTGATTGGAACCTTGGATGGGGCGAATGTCGAGATTAGAGAAGAAGTTGGAGAAGAAAATTTCTTCCTCTTTGGTGCCAAAGCTGATCAGATTGTGAACCTCAGGAAGGAGAGAGCAGAGGGAAAGTTTGTTCCCGATCCTACTTTTGAAGAAGTCAAGAAGTTCGTTGGAAGCGGCGTCTTTGGCTCAAATAGCTATGATGAACTAATCGGCTCTTTGGAAGGAAACGAAGGCTTTGGACGAGCGGATTACTTCCTAGTTGGCAAAGACTTTCCTAGTTACATCGAATGCCAAGAAAAAGTCGACGAGGCATACCGAGACCAGAAAAGATGGACGAGAATGTCAATAATGAACACAGCAGGTTCATTCAAGTTTAGCAGTGACCGGACGATCCACGAATACGCCAAAGACATATGGAATATTAAGCAAGTGGAACTTCCATGAGCCTTGAGACAAGTCTACCTTAAGAACTCTTTTGTACGTCCCATGTTTCTAATGTAATCAAGGTAATAAGGAAATCATGTAATGATGCAATACAATGAACGTAAGAAATAAGATTCACGAGTCAATGTAATTTACAAGGGCCTTCGCTGCCTTAGCGGCGTGCTTCTGACCGGCTAAATGATCGTTGTAAACAATGTCGCTATTACAAACTACGTTGCATATTCTAC
CDS Sequence
- >AT3G29320.1
ATGGATACGATGCGAATCTCCGGTGTATCAACCGGAGCTGAGGTTTTAATACAATGCAATTCCTTATCAAGCCTCGTTTCTCGTCGTTGCGACGACGGAAAATGGCGAACGAGAATGTTTCCGGCGAGAAACAGAGACTTGCGTCCATCGCCGACGAGAAGATCCTTTTTGTCGGTGAAATCTATCTCTAGCGAACCGAAAGCCAAAGTAACCGACGCAGTTCTCGATTCCGAACAAGAAGTGTTTATTAGCTCGATGAATCCGTTTGCGCCAGATGCTGCTTCGGTAGCTTCGAGTATCAAGTACCACGCGGAGTTTACGCCATTGTTTTCACCGGAGAAGTTTGAGTTGCCAAAGGCGTTCTTTGCGACTGCGCAAAGTGTTAGAGATGCTTTGATCATGAATTGGAATGCAACTTATGAGTATTACAACAGAGTGAATGTGAAACAAGCGTATTATTTGTCAATGGAGTTTTTGCAGGGTAGAGCCTTATCGAATGCCGTGGGTAACCTTGGGCTTAATAGCGCTTATGGTGATGCTTTGAAGAGGCTTGGTTTTGATTTGGAAAGCGTGGCTAGTCAGGAGCCAGATCCTGCACTTGGGAATGGTGGACTCGGGAGACTTGCCTCGTGTTTTTTGGATTCCATGGCAACTTTGAATTATCCGGCTTGGGGTTATGGACTTAGATACAAGTATGGCTTGTTCAAACAGAGAATTACAAAAGATGGACAGGAGGAAGCTGCAGAAGATTGGCTTGAGCTAAGCAATCCTTGGGAAATAGTCAGAAATGATGTCTCATATCCTATTAAGTTCTATGGGAAAGTGGTTTTTGGATCAGATGGTAAGAAACGGTGGATTGGTGGAGAAGACATTGTTGCTGTTGCTTATGATGTTCCTATACCTGGTTATAAAACTAAGACAACTATCAATCTGCGGCTCTGGTCAACAAAAGCTCCTTCCGAAGATTTTGATTTATCTTCATATAACTCTGGGAAGCATACTGAGGCAGCAGAAGCTCTATTCAACGCTGAAAAGATTTGCTTCGTGCTTTACCCCGGAGATGAGTCAACTGAAGGAAAGGCTCTTCGTCTGAAGCAACAATACACTCTGTGCTCAGCCTCGCTACAAGATATCGTAGCACGTTTTGAGACAAGGTCTGGAGGAAACGTCAACTGGGAAGAATTTCCAGAGAAGGTTGCAGTGCAGATGAATGACACTCACCCTACCCTATGCATTCCTGAGCTAATGAGGATTCTAATGGATTTAAAAGGACTAAGCTGGGAAGACGCTTGGAAAATCACACAAAGGACTGTGGCATACACAAACCATACAGTCTTGCCTGAGGCACTGGAGAAGTGGAGTTTAGAACTCATGGAGAAATTGCTTCCTCGTCATGTGGAGATTATCGAAAAGATTGATGAGGAGCTAGTTCGCACAATTGTTTCAGAGTATGGCACCGCGGATCCTGACTTACTTGAAGAAAAACTGAAGGCAATGAGGATCTTGGAAAATGTCGAGTTGCCTTCTGCCTTTGCAGATGTGATCGTGAAGCCGGTGAACAAACCAGTTACTGCAAAAGATGCTCAAAATGGCGTGAAAACGGAACAAGAAGAGGAAAAAACTGCTGGAGAGGAAGAGGAAGACGAAGTTATCCCAGAACCAACAGTAGAACCCCCCAAGATGGTCCGTATGGCCAACCTTGCTGTTGTGGGTGGTCATGCTGTAAATGGCGTTGCAGAGATACACAGTGAAATAGTGAAGCAGGACGTGTTTAATGATTTCGTACAGTTGTGGCCAGAAAAATTTCAGAACAAAACAAATGGAGTAACACCAAGGCGATGGATTCGTTTTTGCAACCCATATTTAAGTGATATTATAACTAACTGGATAGGCACAGAAGACTGGGTCTTAAATACCGAAAAGGTTGCGGAACTAAGAAAGTTTGCAGATAATGAAGATCTCCAATCTGAGTGGAGGGCAGCAAAGAAGAAGAACAAGTTGAAGGTTGTATCACTTATCAAGGAAAGAACTGGATATACTGTCAGCCCCGATGCAATGTTCGACATTCAGATCAAGCGTATACATGAGTACAAGCGACAACTGCTAAATATCTTGGGAATTGTTTACCGCTACAAAAAGATGAAGGAAATGAGTGCTAGTGAGAGAGAGAAAGCATTTGTTCCAAGAGTTTGCATATTTGGGGGAAAAGCATTTGCCACATATGTGCAAGCTAAGAGAATTGTTAAATTTATCACAGATGTTGCGTCTACAATTAACCATGATCCAGAAATAGGTGACCTCCTTAAGGTTATCTTTGTTCCTGATTACAATGTCAGTGTTGCTGAATTGCTCATTCCAGCAAGTGAGCTTTCTCAGCACATCAGTACTGCTGGGATGGAAGCTAGTGGGACAAGCAACATGAAATTTTCGATGAACGGTTGCGTTTTGATTGGAACCTTGGATGGGGCGAATGTCGAGATTAGAGAAGAAGTTGGAGAAGAAAATTTCTTCCTCTTTGGTGCCAAAGCTGATCAGATTGTGAACCTCAGGAAGGAGAGAGCAGAGGGAAAGTTTGTTCCCGATCCTACTTTTGAAGAAGTCAAGAAGTTCGTTGGAAGCGGCGTCTTTGGCTCAAATAGCTATGATGAACTAATCGGCTCTTTGGAAGGAAACGAAGGCTTTGGACGAGCGGATTACTTCCTAGTTGGCAAAGACTTTCCTAGTTACATCGAATGCCAAGAAAAAGTCGACGAGGCATACCGAGACCAGAAAAGATGGACGAGAATGTCAATAATGAACACAGCAGGTTCATTCAAGTTTAGCAGTGACCGGACGATCCACGAATACGCCAAAGACATATGGAATATTAAGCAAGTGGAACTTCCATGA
Protein Sequence
- >AT3G29320.1
MDTMRISGVSTGAEVLIQCNSLSSLVSRRCDDGKWRTRMFPARNRDLRPSPTRRSFLSVKSISSEPKAKVTDAVLDSEQEVFISSMNPFAPDAASVASSIKYHAEFTPLFSPEKFELPKAFFATAQSVRDALIMNWNATYEYYNRVNVKQAYYLSMEFLQGRALSNAVGNLGLNSAYGDALKRLGFDLESVASQEPDPALGNGGLGRLASCFLDSMATLNYPAWGYGLRYKYGLFKQRITKDGQEEAAEDWLELSNPWEIVRNDVSYPIKFYGKVVFGSDGKKRWIGGEDIVAVAYDVPIPGYKTKTTINLRLWSTKAPSEDFDLSSYNSGKHTEAAEALFNAEKICFVLYPGDESTEGKALRLKQQYTLCSASLQDIVARFETRSGGNVNWEEFPEKVAVQMNDTHPTLCIPELMRILMDLKGLSWEDAWKITQRTVAYTNHTVLPEALEKWSLELMEKLLPRHVEIIEKIDEELVRTIVSEYGTADPDLLEEKLKAMRILENVELPSAFADVIVKPVNKPVTAKDAQNGVKTEQEEEKTAGEEEEDEVIPEPTVEPPKMVRMANLAVVGGHAVNGVAEIHSEIVKQDVFNDFVQLWPEKFQNKTNGVTPRRWIRFCNPYLSDIITNWIGTEDWVLNTEKVAELRKFADNEDLQSEWRAAKKKNKLKVVSLIKERTGYTVSPDAMFDIQIKRIHEYKRQLLNILGIVYRYKKMKEMSASEREKAFVPRVCIFGGKAFATYVQAKRIVKFITDVASTINHDPEIGDLLKVIFVPDYNVSVAELLIPASELSQHISTAGMEASGTSNMKFSMNGCVLIGTLDGANVEIREEVGEENFFLFGAKADQIVNLRKERAEGKFVPDPTFEEVKKFVGSGVFGSNSYDELIGSLEGNEGFGRADYFLVGKDFPSYIECQEKVDEAYRDQKRWTRMSIMNTAGSFKFSSDRTIHEYAKDIWNIKQVELP