Gene Details:
- Gene ID: AT3G26830
- Gene Symbol: CYP71B15, PAD3
- Gene Name: PHYTOALEXIN DEFICIENT 3
- Description: Cytochrome P450 superfamily protein;(source:Araport11)
- TAIR Accession: locus:2088394
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
Gene Ontology:
- GO:0009737 — acts upstream of or within — response to abscisic acid
- GO:0010120 — acts upstream of or within — camalexin biosynthetic process
- GO:0005506 — enables — iron ion binding
- GO:0043231 — located in — intracellular membrane-bounded organelle
- GO:0009414 — acts upstream of or within — response to water deprivation
- GO:0005515 — enables — protein binding
- GO:0009700 — acts upstream of or within — indole phytoalexin biosynthetic process
- GO:0009617 — acts upstream of or within — response to bacterium
- GO:0009625 — acts upstream of or within — response to insect
- GO:0050832 — acts upstream of or within — defense response to fungus
- GO:0016705 — enables — oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen
- GO:0004497 — enables — monooxygenase activity
- GO:0006952 — acts upstream of or within — defense response
- GO:0010112 — acts upstream of or within — regulation of systemic acquired resistance
- GO:0005788 — located in — endoplasmic reticulum lumen
- GO:0010298 — enables — dihydrocamalexic acid decarboxylase activity
- GO:0005783 — located in — endoplasmic reticulum
- GO:0020037 — enables — heme binding
Germplasm Phenotype:
- CS3805 — reduced camalexin synthesis in response to infection.
- pad3-2 — reduced camalexin synthesis in response to infection.
Function-related keywords:
- leaf lamina base , root , vascular leaf , stamen , sepal , cotyledon , hypocotyl , leaf apex , collective leaf structure , pollen
Literature:
- Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. DOI: 10.1105/tpc.010481 ; PMID: 11884688
- Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. DOI: 10.1046/j.1365-313x.2001.01148.x ; PMID: 11722772
- Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. DOI: 10.1104/pp.103.022186 ; PMID: 12805591
- Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. DOI: 10.1046/j.1365-313x.2003.01794.x ; PMID: 12848825
- Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. DOI: 10.1046/j.1365-313x.2003.01927.x ; PMID: 14675428
- B1-phytoprostanes trigger plant defense and detoxification responses. DOI: 10.1104/pp.104.051714 ; PMID: 15618427
- Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. DOI: 10.1094/MPMI-18-0555 ; PMID: 15986925
- New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. DOI: 10.1007/s00425-005-1553-1 ; PMID: 15931500
- Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. DOI: 10.1104/pp.105.068064 ; PMID: 16258012
- Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. DOI: 10.1104/pp.105.070433 ; PMID: 16299172
- Mapping the Arabidopsis organelle proteome. DOI: 10.1073/pnas.0506958103 ; PMID: 16618929
- CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. DOI: 10.1104/pp.106.082024 ; PMID: 16766671
- The role of cytochrome P450 enzymes in the biosynthesis of camalexin. DOI: 10.1042/BST0341206 ; PMID: 17073786
- Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. DOI: 10.1104/pp.107.095596 ; PMID: 17384165
- Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. DOI: 10.1105/tpc.107.051383 ; PMID: 17573535
- A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. DOI: 10.1073/pnas.0711301105 ; PMID: 18378893
- Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. DOI: 10.1111/j.1365-313X.2008.03540.x ; PMID: 18452590
- Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. DOI: 10.1104/pp.108.121335 ; PMID: 18567828
- Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. DOI: 10.1038/emboj.2008.147 ; PMID: 18650934
- Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. DOI: 10.1104/pp.108.121038 ; PMID: 18650403
- The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. DOI: 10.1104/pp.108.127845 ; PMID: 18790995
- The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2009.03794.x ; PMID: 19154205
- and ABI4-dependent signaling. DOI: 10.1094/MPMI-20-4-0335 ; PMID: 17427804
- and camalexin-dependent resistances. DOI: 10.1111/j.1469-8137.2009.02763.x ; PMID: 19220763
- The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. DOI: 10.1105/tpc.109.066670 ; PMID: 19567706
- Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. DOI: 10.1104/pp.109.147660 ; PMID: 20023151
- Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. DOI: 10.1104/pp.109.152173 ; PMID: 20081042
- Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. DOI: 10.1105/tpc.110.074344 ; PMID: 20605856
- Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. DOI: 10.1093/molbev/msq204 ; PMID: 20736450
- Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. DOI: 10.1105/tpc.110.079145 ; PMID: 21239642
- Assessment of resistance pathways induced in Arabidopsis thaliana by hypovirulent Rhizoctonia spp. isolates. DOI: 10.1094/PHYTO-09-10-0247 ; PMID: 21385012
- Arabidopsis cell death in compatible and incompatible interactions with Alternaria brassicicola. DOI: 10.1007/s10059-011-2203-z ; PMID: 21688205
- Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. DOI: 10.4161/psb.6.10.16759 ; PMID: 21900742
- Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. DOI: 10.1094/MPMI-09-11-0244 ; PMID: 22295908
- UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. DOI: 10.1093/mp/sss025 ; PMID: 22447155
- Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. DOI: 10.1111/j.1744-7909.2012.01131.x ; PMID: 22624950
- Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. DOI: 10.1094/MPMI-03-12-0071-R ; PMID: 22852809
- Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. DOI: 10.1104/pp.112.207324 ; PMID: 23073694
- Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). DOI: 10.1371/journal.pone.0048661 ; PMID: 23144921
- Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. DOI: 10.1111/nph.12218 ; PMID: 23528052
- Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. DOI: 10.1371/journal.ppat.1003221 ; PMID: 23516362
- Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. DOI: 10.1094/MPMI-11-12-0265-R ; PMID: 23617415
- The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. DOI: 10.1104/pp.113.233759 ; PMID: 24639336
- Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. DOI: 10.1111/nph.13032 ; PMID: 25236170
- Physiological and Genetic Analyses of Arabidopsis Thaliana Growth Responses to Electroporation. DOI: 10.1109/TNB.2015.2472992 ; PMID: 26316193
- Camalexin contributes to the partial resistance of Arabidopsis thaliana to the biotrophic soilborne protist Plasmodiophora brassicae. DOI: 10.3389/fpls.2015.00539 ; PMID: 26257750
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- The role of MYB34, MYB51 and MYB122 in the regulation of camalexin biosynthesis in Arabidopsis thaliana. DOI: 10.3389/fpls.2015.00654 ; PMID: 26379682
- Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. DOI: 10.3389/fpls.2016.00227 ; PMID: 26973671
- Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. DOI: 10.1186/s12870-018-1255-z ; PMID: 29490615
- Short-Term Exposure to Nitrogen Dioxide Provides Basal Pathogen Resistance. DOI: 10.1104/pp.18.00704 ; PMID: 30076223
- Distinct branches of the N-end rule pathway modulate the plant immune response. DOI: 10.1111/nph.15387 ; PMID: 30117535
- The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. DOI: 10.1111/nph.16118 ; PMID: 31411742
- The Formation of a Camalexin Biosynthetic Metabolon. DOI: 10.1105/tpc.19.00403 ; PMID: 31511315
- PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding. DOI: 10.1104/pp.19.00635 ; PMID: 31551361
- Protein Profiles of Lipid Droplets during the Hypersensitive Defense Response of Arabidopsis against Pseudomonas Infection. DOI: 10.1093/pcp/pcaa041 ; PMID: 32219438
- Arabidopsis adc-silenced line exhibits differential defense responses to Botrytis cinerea and Pseudomonas syringae infection. DOI: 10.1016/j.plaphy.2020.09.035 ; PMID: 33049445
- Tryptophan-derived metabolites and BAK1 separately contribute to Arabidopsis postinvasive immunity against Alternaria brassicicola. DOI: 10.1038/s41598-020-79562-x ; PMID: 33452278
- Metabolite profiling reveals a role for intercellular dihydrocamalexic acid in the response of mature Arabidopsis thaliana to Pseudomonas syringae. DOI: 10.1016/j.phytochem.2021.112747 ; PMID: 33823457
- MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. DOI: 10.1093/jxb/erab415 ; PMID: 34499162
- Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. DOI: 10.1093/jxb/erac070 ; PMID: 35191984
- AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis. DOI: 10.1093/plcell/koac255 ; PMID: 35972413
- OXIDATIVE SIGNAL-INDUCIBLE1 induces immunity by coordinating N-hydroxypipecolic acid, salicylic acid, and camalexin synthesis. DOI: 10.1111/nph.18592 ; PMID: 36319610
- Shoot-root interaction in control of camalexin exudation in Arabidopsis. DOI: 10.1093/jxb/erad031 ; PMID: 36651631
- Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. DOI: 10.1104/pp.105.068064 ; PMID: 16258012
- Mapping the Arabidopsis organelle proteome. DOI: 10.1073/pnas.0506958103 ; PMID: 16618929
Sequences:
cDNA Sequence
- >AT3G26830.1
TATAAATAGATTATTAACCTAAGCTTGATAGAGAAGACAGAACAAAAAAAAACACAAGAACAGGGCAAGGAAAATGTCGGTTTTCCTCTGTTTCCTCGTCCTCTTACCCCTGATCTTAATCTTCTTGAACGTTTTGAAACCTTCGAAATATAAGCTTCCTCCGGGTCCAAAGAAGCTTCCCATCATCGGAAACTTACACCAACGCAGGACACTACATCCGAGGAATCGCCGTAATCTCGCCGAAATGTATGGACCAGTGGCGCTTCTCCAATACGGATTCGTCCCCGTGGTCGCGATCTCTTCGAAAGAAGCAGCAGAGGAAGTGCTAAAGATCAACGATCTTGAGTGTTGTAGTCGACCAGAGGCGGCCGGAATGAGAGCAACTTTTTACAACTTCAAAGACATCGGGATGGCACCCTTCGGTGACGAGTGGAGTCTGATGCGGAAGCTCTCGGTGGTCGAGCTCTTCAGCGTGAAAAAGCTTCAATCTTTCAAGTATATCATAGAGGAAGAGAATAACTTGTGTGTCAAGAAACTCTCTGAGTTTGCTACGAGACAATCTCCGGTGAATCTTGAGAGAGCCATTTTCACTTTAGTCGGAAATATAGTGTGTCGTATCGGGTACGGGATAAATCTCTATGAGTGTGATTTCTTTGAAGCTGATAGAGTCGTGGATCTTGTGCTAAAGGCTGAAGCGGTCATAAGAGAAACTGTGTTCTCTGATTTCTTTCCCGGAAGAATCGGTAGGTTCATCGACTGTATCTCCGGTCAGAACAGGAGATTGAAGAATAATTTCTCGGTAGTAGACACTTTCTTTCAGAATGTTCTTAACGAGCATCTTAAGCCTGGAAGAGAGAGCTCTACTATTGTTGACTTGATGATCGATATGAAGAAGAAGCAAGAGAACGATGGAGATGCTCTCAAGTTCACCACTGATCATCTCAAAGGAATGATCTCGGACATATTTGTAGCAGGGATTGGTGGAGTCGCTGGCATAACACTATGGGGAATGACCGAGCTGATCAGAAACCCAAGAGTGATGAAGAAAGTGCAAGACGAGATTCGGACAACACTTGGGGACAAGAAGGAGAGAATCAAAGAAGAAGATCTAAACCAACTTCACTACTTTAAGCTCGTGGTCAAGGAGACATTAAGGTTACATCCAACAACTCCACTCTTGCTCCCAAGACAGACAATGTCTCATATCAAGATTCAAGGCTACGATGTTCCTGCGAAAACACAGATCTTAGTCAACGTTTATGCGATGGGTCGTGATCCAAAACTCTGGGAAAACGCAGATGAGTTTAACCCTGACAGGTTTCTCGACAGTTCCGTTGATTTTAAAGGAAAAAACTACGAGTTTATACCGTTTGGATCTGGTAGGAGAATATGTCCAGGGATGACAATGGGTACCATACTTGTTGAGATGGCATTGTTGAATTTGCTTTACTTCTTCGATTGGGGATTGGCGAAGCAGGAGGAAGCCAAAGAGATCATCAATGGGGAAGAAAATTTTCTAGCCTTCTTTCAAGTTCTTCACCACTGAATATATGGTTTGGTTCCTATCAAAAAAAATATATATATATGGTTTTGTTATGTACACTAGTTTCTAAGATAATAAATGAAAATTGTATCTGCTTTTGATTTAGTTTCAATAAAAATAAAAAGTGATGATCCAGTTGGAGTCAGCTTCTAAATATCTGTATTGTTAATGGTGGAACATTATATCCATATTTTTAATTTCATAATTAATGTTAAAATCTTTCACTTGTGTTTG
CDS Sequence
- >AT3G26830.1
ATGTCGGTTTTCCTCTGTTTCCTCGTCCTCTTACCCCTGATCTTAATCTTCTTGAACGTTTTGAAACCTTCGAAATATAAGCTTCCTCCGGGTCCAAAGAAGCTTCCCATCATCGGAAACTTACACCAACGCAGGACACTACATCCGAGGAATCGCCGTAATCTCGCCGAAATGTATGGACCAGTGGCGCTTCTCCAATACGGATTCGTCCCCGTGGTCGCGATCTCTTCGAAAGAAGCAGCAGAGGAAGTGCTAAAGATCAACGATCTTGAGTGTTGTAGTCGACCAGAGGCGGCCGGAATGAGAGCAACTTTTTACAACTTCAAAGACATCGGGATGGCACCCTTCGGTGACGAGTGGAGTCTGATGCGGAAGCTCTCGGTGGTCGAGCTCTTCAGCGTGAAAAAGCTTCAATCTTTCAAGTATATCATAGAGGAAGAGAATAACTTGTGTGTCAAGAAACTCTCTGAGTTTGCTACGAGACAATCTCCGGTGAATCTTGAGAGAGCCATTTTCACTTTAGTCGGAAATATAGTGTGTCGTATCGGGTACGGGATAAATCTCTATGAGTGTGATTTCTTTGAAGCTGATAGAGTCGTGGATCTTGTGCTAAAGGCTGAAGCGGTCATAAGAGAAACTGTGTTCTCTGATTTCTTTCCCGGAAGAATCGGTAGGTTCATCGACTGTATCTCCGGTCAGAACAGGAGATTGAAGAATAATTTCTCGGTAGTAGACACTTTCTTTCAGAATGTTCTTAACGAGCATCTTAAGCCTGGAAGAGAGAGCTCTACTATTGTTGACTTGATGATCGATATGAAGAAGAAGCAAGAGAACGATGGAGATGCTCTCAAGTTCACCACTGATCATCTCAAAGGAATGATCTCGGACATATTTGTAGCAGGGATTGGTGGAGTCGCTGGCATAACACTATGGGGAATGACCGAGCTGATCAGAAACCCAAGAGTGATGAAGAAAGTGCAAGACGAGATTCGGACAACACTTGGGGACAAGAAGGAGAGAATCAAAGAAGAAGATCTAAACCAACTTCACTACTTTAAGCTCGTGGTCAAGGAGACATTAAGGTTACATCCAACAACTCCACTCTTGCTCCCAAGACAGACAATGTCTCATATCAAGATTCAAGGCTACGATGTTCCTGCGAAAACACAGATCTTAGTCAACGTTTATGCGATGGGTCGTGATCCAAAACTCTGGGAAAACGCAGATGAGTTTAACCCTGACAGGTTTCTCGACAGTTCCGTTGATTTTAAAGGAAAAAACTACGAGTTTATACCGTTTGGATCTGGTAGGAGAATATGTCCAGGGATGACAATGGGTACCATACTTGTTGAGATGGCATTGTTGAATTTGCTTTACTTCTTCGATTGGGGATTGGCGAAGCAGGAGGAAGCCAAAGAGATCATCAATGGGGAAGAAAATTTTCTAGCCTTCTTTCAAGTTCTTCACCACTGA
Protein Sequence
- >AT3G26830.1
MSVFLCFLVLLPLILIFLNVLKPSKYKLPPGPKKLPIIGNLHQRRTLHPRNRRNLAEMYGPVALLQYGFVPVVAISSKEAAEEVLKINDLECCSRPEAAGMRATFYNFKDIGMAPFGDEWSLMRKLSVVELFSVKKLQSFKYIIEEENNLCVKKLSEFATRQSPVNLERAIFTLVGNIVCRIGYGINLYECDFFEADRVVDLVLKAEAVIRETVFSDFFPGRIGRFIDCISGQNRRLKNNFSVVDTFFQNVLNEHLKPGRESSTIVDLMIDMKKKQENDGDALKFTTDHLKGMISDIFVAGIGGVAGITLWGMTELIRNPRVMKKVQDEIRTTLGDKKERIKEEDLNQLHYFKLVVKETLRLHPTTPLLLPRQTMSHIKIQGYDVPAKTQILVNVYAMGRDPKLWENADEFNPDRFLDSSVDFKGKNYEFIPFGSGRRICPGMTMGTILVEMALLNLLYFFDWGLAKQEEAKEIINGEENFLAFFQVLHH