Gene Details:
- Gene ID: AT3G21560
- Gene Symbol: BRT1, UGT84A2
- Gene Name: Bright Trichomes 1, UDP-glucosyl transferase 84A2
- Description: UDP-Glycosyltransferase superfamily protein;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000036 — leaf vascular system — sistema vascular de la hoja (Spanish, exact), 葉維管系 (Japanese, exact), leaf venation (related)
- PO:0006504 — leaf trichome — tricoma de hoja (Spanish, exact), 葉毛(毛茸、糸状体) (Japanese, exact), phyllid trichome (narrow)
- PO:0009001 — fruit — frucht (exact, German), fruto (exact, Spanish), 果実 (exact, Japanese), coenocarp (narrow), syncarp (narrow), aggregate fruit (broad), compound fruit (broad), dehiscent fruit (broad), diaspore (broad), indehiscent fruit (broad), multiple fruit (broad), propagule (broad)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009047 — stem — caña (Spanish, exact), culm (exact), eje primario (Spanish, exact), primary axis (exact), primary stem (exact), tallo (Spanish, exact), tronco (Spanish, exact), 茎 (Japanese, exact), bole (narrow), cane (narrow), caudex (narrow), caudices (narrow), core (narrow), primocane (narrow), scape (narrow), stalk (narrow), trunk (narrow)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
Germplasm Phenotype:
- CS66577 — altered phenylpropanoid metabolism; reductions in the level of sinapoyl malate; reduced epidermal fluorescence in UV light in primary leaves; hyper-fluorescent trichomes in secondary leaves
- brt1 fah1 — Double mutants lacked hyper-fluorescent trichomes.
- brt1-1 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-1 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-1 — SGT activity in the extracts from mature mutant leaf tissues was less than 5% of that of the wild type.
- brt1-1 — Very low sinapic acid:UDP-glucose glucosyltransferase activity in the mutant leaves compared to that of wild type.
- brt1-2 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-2 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-2 — Very low sinapic acid:UDP-glucose glucosyltransferase activity in the mutant leaves compared to that of wild type.
- brt1-3 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-3 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-3 — Very low sinapic acid:UDP-glucose glucosyltransferase activity in the mutant leaves compared to that of wild type.
- brt1-4 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-4 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-4 — Very low sinapic acid:UDP-glucose glucosyltransferase activity in the mutant leaves compared to that of wild type.
- brt1-5 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-5 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-6 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-6 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-7 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-7 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
- brt1-8 — Levels of sinapoylmalate were reduced to 60-70% of those in wild-type leaves and the mutations had a similar impact on seed sinapoylcholine and sinapoylglucose content. The quantity and quality of lignin in mutant plants were unchanged relative to wild type.
- brt1-8 — Mutant display a red-fluorescence phenotype in primary leaves and hyper-fluorescent trichome phenotype in secondary leaves.
Function-related keywords:
- shoot axis apex , leaf lamina base , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , leaf vascular system , leaf trichome , fruit , root , root , vascular leaf , flower , stem , cotyledon , guard cell
Literature:
- Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. DOI: 10.1111/j.1365-313X.2005.02371.x ; PMID: 15807784
- The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. DOI: 10.1104/pp.105.068171 ; PMID: 16258011
- CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. DOI: 10.1105/tpc.105.040097 ; PMID: 16829591
- Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. DOI: 10.1007/s11103-007-9241-0 ; PMID: 17885809
- Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance. DOI: 20081565 ; PMID: 18231654
- Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. DOI: 10.1104/pp.108.126979 ; PMID: 18805951
- Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. DOI: 10.1093/mp/ssp037 ; PMID: 19626137
- Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. DOI: 10.1073/pnas.0911635107 ; PMID: 20351290
- Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. DOI: 10.1093/molbev/msq204 ; PMID: 20736450
- UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. DOI: 10.1111/nph.12155 ; PMID: 23356583
- Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. DOI: 10.1186/s12870-017-1048-9 ; PMID: 28587634
- Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis. DOI: 10.1007/s00299-017-2225-x ; PMID: 29027578
- Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. DOI: 10.1038/s41598-018-19535-3 ; PMID: 29382843
- Sinapate Esters Mediate UV-B-Induced Stomatal Closure by Regulating Nitric Oxide, Hydrogen Peroxide, and Malate Accumulation in Arabidopsis thaliana. DOI: 10.1093/pcp/pcac059 ; PMID: 35475535
Sequences:
cDNA Sequence
- >AT3G21560.1
AGAGAAAATCAACAAGTATTAAATAACGCAATGGGCCAATATGCGACGGTAATAATTAAGAGCTCCTTAATTATTCACCTTGCTTGTCTCTCCTATTTAAGACGTATTTCTTCTCTTCTACCATCCAACAAGTCACACACTTAAAACAAAACAAAACAAAACAAAAACAGAGCACACAAAAAGAGAAACCAAGTTTTCTTAAAAATGGAGCTAGAATCTTCTCCTCCTCTACCTCCTCATGTGATGCTCGTATCTTTTCCAGGGCAAGGCCACGTTAATCCACTTCTTCGTCTTGGTAAGCTCTTAGCTTCAAAGGGTTTGCTCATAACCTTCGTCACCACTGAGTCATGGGGCAAAAAGATGCGAATCTCCAACAAAATCCAAGACCGTGTCCTCAAACCGGTTGGTAAAGGCTATCTCCGGTATGATTTCTTCGACGACGGGCTTCCTGAAGACGACGAAGCTAGCAGAACCAACTTAACCATCCTCCGACCACATCTAGAGCTGGTCGGCAAAAGAGAGATCAAGAACCTTGTGAAACGTTACAAGGAAGTAACGAAACAGCCCGTGACATGTCTTATCAACAACCCTTTCGTCTCTTGGGTCTGTGACGTGGCAGAAGATCTTCAAATCCCTTGTGCTGTTCTTTGGGTTCAATCTTGTGCCTGCTTAGCTGCTTATTACTATTACCACCACAACCTAGTTGACTTCCCGACCAAAACAGAACCCGAGATCGATGTCCAAATCTCTGGCATGCCTCTCTTGAAACATGACGAGATCCCTTCTTTCATTCACCCTTCAAGTCCTCACTCCGCTTTGCGAGAAGTGATCATAGATCAGATTAAACGGCTTCACAAGACTTTCTCCATTTTCATCGACACTTTCAACTCATTGGAGAAAGACATCATTGACCACATGTCGACGCTCTCTCTCCCCGGTGTTATCAGACCGCTAGGACCACTCTACAAAATGGCTAAAACCGTAGCTTATGATGTCGTTAAAGTAAACATCTCTGAGCCAACGGATCCTTGCATGGAGTGGTTAGACTCGCAGCCAGTTTCCTCCGTTGTTTACATCTCATTCGGGACCGTTGCTTACTTGAAACAAGAACAAATAGACGAGATCGCTTACGGTGTGTTAAACGCCGACGTTACGTTCTTGTGGGTGATTAGACAACAAGAGTTAGGTTTCAACAAAGAGAAACATGTTTTGCCGGAAGAAGTTAAAGGGAAAGGGAAGATCGTTGAATGGTGTTCACAAGAGAAAGTATTATCTCATCCTTCAGTGGCATGTTTCGTGACTCACTGTGGATGGAACTCAACGATGGAAGCTGTGTCTTCCGGAGTCCCGACGGTTTGTTTTCCTCAATGGGGAGATCAAGTCACGGACGCCGTTTACATGATCGATGTTTGGAAGACGGGAGTGAGGCTAAGCCGTGGAGAGGCGGAGGAGAGGTTAGTGCCGAGGGAGGAAGTTGCGGAGAGGTTGAGAGAGGTTACTAAAGGAGAGAAAGCGATCGAGTTGAAAAAGAATGCTTTGAAGTGGAAGGAAGAGGCGGAGGCGGCGGTTGCTCGCGGTGGTTCGTCGGATAGGAATCTTGAAAAGTTTGTGGAGAAGTTGGGTGCCAAACCTGTGGGGAAAGTACAAAACGGGAGTCATAATCATGTCTTGGCTGGATCAATCAAAAGCTTTTAAAAAGTCATTTAAGTTTTTTTGTTTTTTGCCTTTGGTTTCTGCAAATTCGTAATTGTGTTTGTATCCATCCTCCCATTGTGTTCTTTGTTTTTCTGTTTACTATTTTTTTTTGGTATGGGTCTAGGGGAGAGTCAATGACCTTACTGAAGAATGTCAGTCACGCATTAAAAAATATATTATTAATGGTTAATACTATATCTTGCCATATTGGGAAATTTATTTGATATGATTAA
CDS Sequence
- >AT3G21560.1
ATGGAGCTAGAATCTTCTCCTCCTCTACCTCCTCATGTGATGCTCGTATCTTTTCCAGGGCAAGGCCACGTTAATCCACTTCTTCGTCTTGGTAAGCTCTTAGCTTCAAAGGGTTTGCTCATAACCTTCGTCACCACTGAGTCATGGGGCAAAAAGATGCGAATCTCCAACAAAATCCAAGACCGTGTCCTCAAACCGGTTGGTAAAGGCTATCTCCGGTATGATTTCTTCGACGACGGGCTTCCTGAAGACGACGAAGCTAGCAGAACCAACTTAACCATCCTCCGACCACATCTAGAGCTGGTCGGCAAAAGAGAGATCAAGAACCTTGTGAAACGTTACAAGGAAGTAACGAAACAGCCCGTGACATGTCTTATCAACAACCCTTTCGTCTCTTGGGTCTGTGACGTGGCAGAAGATCTTCAAATCCCTTGTGCTGTTCTTTGGGTTCAATCTTGTGCCTGCTTAGCTGCTTATTACTATTACCACCACAACCTAGTTGACTTCCCGACCAAAACAGAACCCGAGATCGATGTCCAAATCTCTGGCATGCCTCTCTTGAAACATGACGAGATCCCTTCTTTCATTCACCCTTCAAGTCCTCACTCCGCTTTGCGAGAAGTGATCATAGATCAGATTAAACGGCTTCACAAGACTTTCTCCATTTTCATCGACACTTTCAACTCATTGGAGAAAGACATCATTGACCACATGTCGACGCTCTCTCTCCCCGGTGTTATCAGACCGCTAGGACCACTCTACAAAATGGCTAAAACCGTAGCTTATGATGTCGTTAAAGTAAACATCTCTGAGCCAACGGATCCTTGCATGGAGTGGTTAGACTCGCAGCCAGTTTCCTCCGTTGTTTACATCTCATTCGGGACCGTTGCTTACTTGAAACAAGAACAAATAGACGAGATCGCTTACGGTGTGTTAAACGCCGACGTTACGTTCTTGTGGGTGATTAGACAACAAGAGTTAGGTTTCAACAAAGAGAAACATGTTTTGCCGGAAGAAGTTAAAGGGAAAGGGAAGATCGTTGAATGGTGTTCACAAGAGAAAGTATTATCTCATCCTTCAGTGGCATGTTTCGTGACTCACTGTGGATGGAACTCAACGATGGAAGCTGTGTCTTCCGGAGTCCCGACGGTTTGTTTTCCTCAATGGGGAGATCAAGTCACGGACGCCGTTTACATGATCGATGTTTGGAAGACGGGAGTGAGGCTAAGCCGTGGAGAGGCGGAGGAGAGGTTAGTGCCGAGGGAGGAAGTTGCGGAGAGGTTGAGAGAGGTTACTAAAGGAGAGAAAGCGATCGAGTTGAAAAAGAATGCTTTGAAGTGGAAGGAAGAGGCGGAGGCGGCGGTTGCTCGCGGTGGTTCGTCGGATAGGAATCTTGAAAAGTTTGTGGAGAAGTTGGGTGCCAAACCTGTGGGGAAAGTACAAAACGGGAGTCATAATCATGTCTTGGCTGGATCAATCAAAAGCTTTTAA
Protein Sequence
- >AT3G21560.1
MELESSPPLPPHVMLVSFPGQGHVNPLLRLGKLLASKGLLITFVTTESWGKKMRISNKIQDRVLKPVGKGYLRYDFFDDGLPEDDEASRTNLTILRPHLELVGKREIKNLVKRYKEVTKQPVTCLINNPFVSWVCDVAEDLQIPCAVLWVQSCACLAAYYYYHHNLVDFPTKTEPEIDVQISGMPLLKHDEIPSFIHPSSPHSALREVIIDQIKRLHKTFSIFIDTFNSLEKDIIDHMSTLSLPGVIRPLGPLYKMAKTVAYDVVKVNISEPTDPCMEWLDSQPVSSVVYISFGTVAYLKQEQIDEIAYGVLNADVTFLWVIRQQELGFNKEKHVLPEEVKGKGKIVEWCSQEKVLSHPSVACFVTHCGWNSTMEAVSSGVPTVCFPQWGDQVTDAVYMIDVWKTGVRLSRGEAEERLVPREEVAERLREVTKGEKAIELKKNALKWKEEAEAAVARGGSSDRNLEKFVEKLGAKPVGKVQNGSHNHVLAGSIKSF