Gene Details:
- Gene ID: AT2G42620
- Gene Symbol: AtMAX2, MAX2, ORE9, PPS
- Gene Name: MORE AXILLARY BRANCHES 2, ORESARA 9, PLEIOTROPIC PHOTOSIGNALING
- Description: RNI-like superfamily protein;(source:Araport11)
- TAIR Accession: locus:2041499
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000037 — shoot axis apex — ápice del epiblasto (epiblastema) (Spanish, exact), シュート頂、茎頂 (Japanese, exact)
- PO:0008019 — leaf lamina base — base de la lámina de la hoja (Spanish, exact), 葉身基部 (Japanese, exact)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009006 — shoot system — sistema de epiblasto (epiblastema) (Spanish, exact), シュート系、苗条系 (Japanese, exact), Poaceae crown (related), shoot (related), thalli (related), thallus (related), tree crown (narrow)
- PO:0009009 — plant embryo — embrión (Spanish, exact), 植物胚 (Japanese, exact), germ (related), embryo (broad)
- PO:0009025 — vascular leaf — foliage leaf (exact), hoja vascular (Spanish, exact), leaf, vascular (exact), vascular leaves (exact, plural), 維管束のある葉, または維管束植物の葉 (Japanese, exact), crozier (related), macrophyll (related), megaphyll (related), ascidia (narrow), ascidium (narrow), fiddlehead (narrow), frond (narrow), needle-like leaf (narrow), pitcher (narrow), pitcher blade (narrow), pitcher-blade (narrow), scale-like leaf (narrow), sterile frond (narrow), trophophyll (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0020030 — cotyledon — cotiledón (Spanish, exact), seed leaf (exact), 子葉 (Japanese, exact)
- PO:0020038 — petiole — pecíolo (Spanish, exact), 葉柄 (Japanese, exact)
- PO:0020100 — hypocotyl — hipocótile (Spanish, exact), 胚軸 (Japanese, exact)
- PO:0020137 — leaf apex — ápice de la hoja (Spanish, exact), 葉先 (Japanese, exact), leaf lamina apex (narrow), phyllid apex (narrow)
- PO:0025022 — collective leaf structure — estructura colectiva de hoja (Spanish, exact), leaf series (exact), 葉が集まった構造 (Japanese, exact), leaf whorl (narrow), rosette (narrow), cycle (broad), verticil (broad)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000014 — rosette leaf — hoja en roseta (Spanish, exact), ロゼット葉 (Japanese, exact)
- PO:0000055 — bud — yema (Spanish, exact), 芽 (Japanese, exact), adventitious bud (narrow)
- PO:0009001 — fruit — frucht (exact, German), fruto (exact, Spanish), 果実 (exact, Japanese), coenocarp (narrow), syncarp (narrow), aggregate fruit (broad), compound fruit (broad), dehiscent fruit (broad), diaspore (broad), indehiscent fruit (broad), multiple fruit (broad), propagule (broad)
- PO:0009047 — stem — caña (Spanish, exact), culm (exact), eje primario (Spanish, exact), primary axis (exact), primary stem (exact), tallo (Spanish, exact), tronco (Spanish, exact), 茎 (Japanese, exact), bole (narrow), cane (narrow), caudex (narrow), caudices (narrow), core (narrow), primocane (narrow), scape (narrow), stalk (narrow), trunk (narrow)
Gene Ontology:
- GO:0019005 — part of — SCF ubiquitin ligase complex
- GO:0006511 — acts upstream of or within — ubiquitin-dependent protein catabolic process
- GO:0009414 — acts upstream of or within — response to water deprivation
- GO:0031146 — involved in — SCF-dependent proteasomal ubiquitin-dependent protein catabolic process
- GO:1902584 — acts upstream of or within — positive regulation of response to water deprivation
- GO:0005515 — enables — protein binding
- GO:0005634 — located in — nucleus
- GO:0005634 — is active in — nucleus
- GO:1900057 — involved in — positive regulation of leaf senescence
- GO:0010187 — acts upstream of or within — negative regulation of seed germination
- GO:0010016 — acts upstream of or within — shoot system morphogenesis
- GO:0009926 — acts upstream of or within — auxin polar transport
- GO:0009934 — acts upstream of or within — regulation of meristem structural organization
- GO:0009416 — acts upstream of or within — response to light stimulus
- GO:0000151 — part of — ubiquitin ligase complex
Germplasm Phenotype:
- CS9565 — increased shoot branching; increased hypocotyl length in the light
- CS9566 — increased shoot branching; increased hypocotyl length in the light
Function-related keywords:
- shoot axis apex , leaf lamina base , root , shoot system , plant embryo , vascular leaf , stamen , sepal , flower , inflorescence flower pedicel , cotyledon , petiole , hypocotyl , leaf apex , collective leaf structure , pollen , rosette leaf , bud , fruit , root , shoot system , flower , stem
Literature:
- Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. DOI: 10.1046/j.1365-313x.1997.00527.x ; PMID: 9351240
- MAX1 and MAX2 control shoot lateral branching in Arabidopsis. DOI: 10.1242/dev.129.5.1131 ; PMID: 11874909
- ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. DOI: 10.1105/tpc.010061 ; PMID: 11487692
- Suppression of tiller bud activity in tillering dwarf mutants of rice. DOI: 10.1093/pcp/pci022 ; PMID: 15659436
- MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. DOI: 10.1016/j.devcel.2005.01.009 ; PMID: 15737939
- The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. DOI: 10.1016/j.cub.2006.01.058 ; PMID: 16546078
- Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. DOI: 10.1104/pp.106.087676 ; PMID: 16980559
- MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. DOI: 10.1111/j.1365-313X.2007.03032.x ; PMID: 17346265
- The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. DOI: 10.1534/genetics.107.071928 ; PMID: 17435248
- Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. DOI: 10.1266/ggs.82.361 ; PMID: 17895586
- The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. DOI: 10.1104/pp.107.107227 ; PMID: 17951458
- Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. DOI: 10.1271/bbb.90443 ; PMID: 19897913
- Phytochrome regulation of branching in Arabidopsis. DOI: 10.1104/pp.109.148833 ; PMID: 20154098
- Strigolactones enhance competition between shoot branches by dampening auxin transport. DOI: 10.1242/dev.051987 ; PMID: 20667910
- Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. DOI: 10.1111/j.1365-3040.2009.02050.x ; PMID: 19843258
- Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. DOI: 10.1104/pp.110.164640 ; PMID: 21119045
- Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. DOI: 10.1093/jxb/erq464 ; PMID: 21307387
- F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. DOI: 10.1073/pnas.1100987108 ; PMID: 21555559
- Smoke signals and seed dormancy: where next for MAX2? DOI: 10.4161/psb.6.9.17303 ; PMID: 22019642
- Overexpression of AtCHX24, a member of the cation/H⁺ exchangers, accelerates leaf senescence in Arabidopsis thaliana. DOI: 10.1016/j.plantsci.2011.08.008 ; PMID: 22195591
- Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. DOI: 10.1242/dev.074567 ; PMID: 22357928
- Karrikins force a rethink of strigolactone mode of action. DOI: 10.4161/psb.20977 ; PMID: 22827937
- Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula). DOI: 10.1371/journal.pone.0042839 ; PMID: 22916167
- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. DOI: 10.1093/mp/sss127 ; PMID: 23142794
- Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. DOI: 10.1093/mp/sss138 ; PMID: 23204501
- Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. DOI: 10.1111/nph.12189 ; PMID: 23425316
- A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. DOI: 10.1104/pp.112.211383 ; PMID: 23424248
- MAX2 affects multiple hormones to promote photomorphogenesis. DOI: 10.1093/mp/sss029 ; PMID: 22466576
- Carlactone-independent seedling morphogenesis in Arabidopsis. DOI: 10.1111/tpj.12265 ; PMID: 23773129
- SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. DOI: 10.1104/pp.113.221259 ; PMID: 23893171
- The origins and mechanisms of karrikin signalling. DOI: 10.1016/j.pbi.2013.07.005 ; PMID: 23954000
- Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. DOI: 10.1104/pp.113.226837 ; PMID: 24198318
- The karrikin response system of Arabidopsis. DOI: 10.1111/tpj.12430 ; PMID: 24433542
- Positive regulatory role of strigolactone in plant responses to drought and salt stress. DOI: 10.1073/pnas.1322135111 ; PMID: 24379380
- New strigolactone analogs as plant hormones with low activities in the rhizosphere. DOI: 10.1093/mp/sst163 ; PMID: 24249726
- Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. DOI: 10.1016/j.devcel.2013.11.010 ; PMID: 24369836
- Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. DOI: 10.1111/nph.12744 ; PMID: 24571327
- N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression. DOI: 10.1371/journal.pone.0077863 ; PMID: 24223735
- Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. DOI: 10.1016/j.chembiol.2014.07.005 ; PMID: 25126711
- Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. DOI: 10.1093/jxb/eru513 ; PMID: 25609825
- The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. DOI: 10.1186/s12870-015-0434-4 ; PMID: 25849639
- Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. DOI: 10.1093/jxb/erv309 ; PMID: 26136271
- Endogenous Arabidopsis messenger RNAs transported to distant tissues. DOI: 10.1038/nplants.2015.25 ; PMID: 27247031
- Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence. DOI: 10.1093/jxb/erv438 ; PMID: 26507893
- SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. DOI: 10.1105/tpc.15.00562 ; PMID: 26546447
- Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. DOI: 10.1105/tpc.15.00605 ; PMID: 26546446
- Functional redundancy in the control of seedling growth by the karrikin signaling pathway. DOI: 10.1007/s00425-015-2458-2 ; PMID: 26754282
- Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone. DOI: 10.3389/fpls.2015.01219 ; PMID: 26779242
- Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions. DOI: 10.1007/s00425-016-2477-7 ; PMID: 26919985
- SMAX1-LIKE7 Signals from the Nucleus to Regulate Shoot Development in Arabidopsis via Partially EAR Motif-Independent Mechanisms. DOI: 10.1105/tpc.16.00286 ; PMID: 27317673
- The Response of the Root Proteome to the Synthetic Strigolactone GR24 in Arabidopsis. DOI: 10.1074/mcp.M115.050062 ; PMID: 27317401
- OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses. DOI: 10.1016/j.bbrc.2016.07.065 ; PMID: 27425246
- Light involved regulation of BZR1 stability and phosphorylation status to coordinate plant growth in Arabidopsis. DOI: 10.1042/BSR20170069 ; PMID: 28396515
- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation. DOI: 10.1016/j.cub.2017.03.014 ; PMID: 28392107
- Comprehensive Analysis of DWARF14-LIKE2 (DLK2) Reveals Its Functional Divergence from Strigolactone-Related Paralogs. DOI: 10.3389/fpls.2017.01641 ; PMID: 28970845
- Strigolactones are common regulators in induction of stomatal closure in planta. DOI: 10.1080/15592324.2018.1444322 ; PMID: 29473784
- Strigolactone-nitric oxide interplay in plants: The story has just begun. DOI: 10.1111/ppl.12712 ; PMID: 29479710
- A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. DOI: 10.1093/jxb/ery164 ; PMID: 29722815
- Functional Analysis of MAX2 in Phototropins-Mediated Cotyledon Flattening in Arabidopsis. DOI: 10.3389/fpls.2018.01507 ; PMID: 30386362
- Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. DOI: 10.1111/tpj.14233 ; PMID: 30659713
- Crosstalk between the cytokinin and MAX2 signaling pathways in growth and callus formation of Arabidopsis thaliana. DOI: 10.1016/j.bbrc.2019.02.038 ; PMID: 30795866
- CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants. DOI: 10.1111/pce.13594 ; PMID: 31134630
- SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. DOI: 10.1371/journal.pgen.1008327 ; PMID: 31465451
- Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants. DOI: 10.3390/plants8090352 ; PMID: 31546850
- Potential of Karrikins as Novel Plant Growth Regulators in Agriculture. DOI: 10.3390/plants9010043 ; PMID: 31888087
- Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. DOI: 10.1105/tpc.20.00140 ; PMID: 32358074
- Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. DOI: 10.1242/dev.183681 ; PMID: 32345745
- The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. DOI: 10.1093/pcp/pcaa066 ; PMID: 32392325
- Structure-Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2. DOI: 10.1105/tpc.19.00752 ; PMID: 32434855
- SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. DOI: 10.1038/s41477-020-0653-z ; PMID: 32451447
- Transcriptional regulation of strigolactone signalling in Arabidopsis. DOI: 10.1038/s41586-020-2382-x ; PMID: 32528176
- Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. DOI: 10.1038/s41467-020-17252-y ; PMID: 32665554
- Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age. DOI: 10.1093/jxb/eraa347 ; PMID: 32720687
- Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor. DOI: 10.1074/mcp.RA119.001766 ; PMID: 33372050
- Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. DOI: 10.3390/genes12020298 ; PMID: 33672598
- Strigolactone mimic 2-nitrodebranone is highly active in Arabidopsis growth and development. DOI: 10.1111/tpj.15274 ; PMID: 33860570
- HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. DOI: 10.1111/nph.17427 ; PMID: 33909299
- Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. DOI: 10.1111/tpj.15383 ; PMID: 34160854
- The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. DOI: 10.1093/plcell/koab210 ; PMID: 34436598
- Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1. DOI: 10.1093/plphys/kiab487 ; PMID: 34687296
- KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. DOI: 10.1016/j.cub.2021.10.044 ; PMID: 34758285
- Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. DOI: 10.1093/pcp/pcab149 ; PMID: 34791413
- Safeguard DCL2-Dependent 22-nt siRNA generation by DCL1. DOI: 10.1016/j.bbrc.2022.03.076 ; PMID: 35316769
- Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana. DOI: 10.1111/ppl.13681 ; PMID: 35362177
- Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. DOI: 10.3390/ijms23095246 ; PMID: 35563637
- The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. DOI: 10.1016/j.xplc.2022.100303 ; PMID: 35529949
- Karrikin signaling regulates hypocotyl shade avoidance response by modulating auxin homeostasis in Arabidopsis. DOI: 10.1111/nph.18459 ; PMID: 36068957
- The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. DOI: 10.1111/jipb.13463 ; PMID: 36738234
- SLs signal transduction gene CsMAX2 of cucumber positively regulated to salt, drought and ABA stress in Arabidopsis thaliana L. DOI: 10.1016/j.gene.2023.147282 ; PMID: 36822526
- OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. DOI: 10.1038/s41467-023-37790-5 ; PMID: 37059727
- ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. DOI: 10.1105/tpc.010061 ; PMID: 11487692
Sequences:
cDNA Sequence
- >AT2G42620.1
TCATCACGTGGCTCTCTCTCTGCCCAACACAAATCTCTTCTTCTTCCTTCTTCCCTCTTTCTTCTTCTAAAATCTCCTCTCTTGTAGATTTGCCGCTTCTCATGGCTTCCACTACTCTCTCCGACCTCCCTGACGTCATCTTATCCACCATTTCCTCTCTCGTATCCGATTCCCGAGCTCGCAACTCTCTCTCCCTCGTCTCTCACAAATTCCTCGCTCTCGAACGATCCACTCGCTCTCACCTCACTATCCGTGGCAACGCTCGTGATCTCTCCCTCGTCCCCGACTGTTTCCGATCAATCTCACATCTCGATCTCTCTTTCCTCTCCCCATGGGGTCACACTCTTCTCGCTTCTCTCCCAATCGATCACCAGAACCTTCTCGCTCTCCGTCTCAAATTCTGTTTCCCTTTCGTCGAGTCTCTAAACGTCTACACACGATCTCCGAGCTCTCTCGAGCTTCTACTTCCTCAATGGCCGAGAATTCGCCACATCAAGCTCCTCCGATGGCATCAACGAGCTTCTCAGATCCCTACCGGTGGCGATTTTGTTCCTATTTTTGAACACTGTGGTGGTTTCCTTGAGTCTTTAGATCTCTCCAACTTCTATCACTGGACTGAAGACTTACCTCCTGTGCTTCTCCGCTATGCTGACGTGGCGGCGAGGCTTACACGGTTAGATCTCTTGACGGCGTCGTTCACCGAGGGATACAAATCAAGCGAAATCGTTAGTATCACCAAATCTTGCCCTAATTTGAAGACTTTTCGTGTAGCTTGTACGTTTGATCCGAGATACTTTGAATTCGTCGGAGACGAGACTCTCTCCGCCGTAGCTACCAGTTCCCCTAAGTTAACGCTTCTACACATGGTGGACACAGCTTCGTTGGCGAATCCTAGAGCTATTCCAGGTACGGAAGCTGGAGATTCAGCTGTCACGGCGGGGACGCTAATTGAAGTTTTCTCAGGTTTACCGAATCTAGAGGAGCTGGTTCTTGACGTAGGAAAGGATGTGAAGCATAGTGGTGTAGCTTTAGAGGCATTGAATTCTAAATGCAAGAAGTTAAGAGTATTGAAGCTAGGACAGTTCCAAGGTGTTTGCTCTGCTACAGAATGGAGGAGGCTCGACGGTGTGGCTTTATGTGGAGGATTGCAGTCGTTGTCGATTAAGAATTCCGGCGATTTGACTGATATGGGTTTGGTGGCTATAGGGAGAGGATGTTGTAAGTTGACTACGTTTGAGATTCAAGGGTGTGAGAATGTAACAGTGGATGGACTAAGAACAATGGTTAGTCTTCGGAGTAAGACTTTGACTGATGTGAGAATCTCTTGCTGCAAGAATCTTGACACAGCTGCTTCTTTAAAGGCAATTGAGCCGATTTGTGATCGGATCAAGAGACTGCATATAGACTGTGTGTGGTCTGGTTCAGAGGACGAGGAGGTAGAAGGAAGAGTGGAAACTAGTGAGGCTGACCACGAAGAGGAGGATGATGGTTACGAGAGGAGCCAGAAGAGGTGCAAGTATTCATTCGAGGAAGAACACTGCTCAACTAGTGATGTGAATGGATTCTGTTCTGAAGATAGAGTATGGGAGAAACTGGAGTATCTATCTTTATGGATCAATGTTGGAGAATTTTTGACGCCATTACCTATGACAGGACTAGATGACTGTCCGAATTTGGAAGAGATTAGGATCAAGATAGAAGGAGATTGCAGAGGTAAACGCAGGCCAGCCGAGCCAGAGTTTGGGTTAAGTTGTCTCGCTCTCTACCCAAAGCTCTCAAAGATGCAGTTAGATTGCGGGGACACAATCGGTTTCGCACTGACCGCACCGCCAATGCAGATGGATTTGAGTTTATGGGAAAGATTCTTCTTGACCGGAATTGGAAGCTTGAGCTTGAGCGAGCTTGATTATTGGCCACCACAGGATAGAGATGTTAACCAGAGGAGTCTCTCGCTTCCTGGAGCAGGTCTGTTACAAGAGTGCCTGACTTTGAGGAAGCTGTTCATCCATGGAACAGCTCATGAGCATTTCATGAACTTTTTGTTGAGAATCCCAAACTTAAGGGATGTACAGCTTAGAGCAGACTATTATCCGGCGCCGGAGAACGATATGAGCACAGAGATGAGAGTTGGTTCGTGTAGCCGATTCGAGGACCAATTGAACAGCCGCAACATCATTGACTGAAACTTGAAGAGTGAGTTACCTACACTATTATATCTGTATTGACTTCAGAAACTGGTCCATTTTATTTGTATGGTCAAGAGTGTTTTGTATATGTTTGTAAGAGGAAAGGACAAAGACTATAATTTGCGATGATTAATGATATCATAAAACAATAATCCATTTTTATAAATGATAAAACTCAAATGAAGAAGCCGGAGAGATCTGGAGTACAAACTCA
CDS Sequence
- >AT2G42620.1
ATGGCTTCCACTACTCTCTCCGACCTCCCTGACGTCATCTTATCCACCATTTCCTCTCTCGTATCCGATTCCCGAGCTCGCAACTCTCTCTCCCTCGTCTCTCACAAATTCCTCGCTCTCGAACGATCCACTCGCTCTCACCTCACTATCCGTGGCAACGCTCGTGATCTCTCCCTCGTCCCCGACTGTTTCCGATCAATCTCACATCTCGATCTCTCTTTCCTCTCCCCATGGGGTCACACTCTTCTCGCTTCTCTCCCAATCGATCACCAGAACCTTCTCGCTCTCCGTCTCAAATTCTGTTTCCCTTTCGTCGAGTCTCTAAACGTCTACACACGATCTCCGAGCTCTCTCGAGCTTCTACTTCCTCAATGGCCGAGAATTCGCCACATCAAGCTCCTCCGATGGCATCAACGAGCTTCTCAGATCCCTACCGGTGGCGATTTTGTTCCTATTTTTGAACACTGTGGTGGTTTCCTTGAGTCTTTAGATCTCTCCAACTTCTATCACTGGACTGAAGACTTACCTCCTGTGCTTCTCCGCTATGCTGACGTGGCGGCGAGGCTTACACGGTTAGATCTCTTGACGGCGTCGTTCACCGAGGGATACAAATCAAGCGAAATCGTTAGTATCACCAAATCTTGCCCTAATTTGAAGACTTTTCGTGTAGCTTGTACGTTTGATCCGAGATACTTTGAATTCGTCGGAGACGAGACTCTCTCCGCCGTAGCTACCAGTTCCCCTAAGTTAACGCTTCTACACATGGTGGACACAGCTTCGTTGGCGAATCCTAGAGCTATTCCAGGTACGGAAGCTGGAGATTCAGCTGTCACGGCGGGGACGCTAATTGAAGTTTTCTCAGGTTTACCGAATCTAGAGGAGCTGGTTCTTGACGTAGGAAAGGATGTGAAGCATAGTGGTGTAGCTTTAGAGGCATTGAATTCTAAATGCAAGAAGTTAAGAGTATTGAAGCTAGGACAGTTCCAAGGTGTTTGCTCTGCTACAGAATGGAGGAGGCTCGACGGTGTGGCTTTATGTGGAGGATTGCAGTCGTTGTCGATTAAGAATTCCGGCGATTTGACTGATATGGGTTTGGTGGCTATAGGGAGAGGATGTTGTAAGTTGACTACGTTTGAGATTCAAGGGTGTGAGAATGTAACAGTGGATGGACTAAGAACAATGGTTAGTCTTCGGAGTAAGACTTTGACTGATGTGAGAATCTCTTGCTGCAAGAATCTTGACACAGCTGCTTCTTTAAAGGCAATTGAGCCGATTTGTGATCGGATCAAGAGACTGCATATAGACTGTGTGTGGTCTGGTTCAGAGGACGAGGAGGTAGAAGGAAGAGTGGAAACTAGTGAGGCTGACCACGAAGAGGAGGATGATGGTTACGAGAGGAGCCAGAAGAGGTGCAAGTATTCATTCGAGGAAGAACACTGCTCAACTAGTGATGTGAATGGATTCTGTTCTGAAGATAGAGTATGGGAGAAACTGGAGTATCTATCTTTATGGATCAATGTTGGAGAATTTTTGACGCCATTACCTATGACAGGACTAGATGACTGTCCGAATTTGGAAGAGATTAGGATCAAGATAGAAGGAGATTGCAGAGGTAAACGCAGGCCAGCCGAGCCAGAGTTTGGGTTAAGTTGTCTCGCTCTCTACCCAAAGCTCTCAAAGATGCAGTTAGATTGCGGGGACACAATCGGTTTCGCACTGACCGCACCGCCAATGCAGATGGATTTGAGTTTATGGGAAAGATTCTTCTTGACCGGAATTGGAAGCTTGAGCTTGAGCGAGCTTGATTATTGGCCACCACAGGATAGAGATGTTAACCAGAGGAGTCTCTCGCTTCCTGGAGCAGGTCTGTTACAAGAGTGCCTGACTTTGAGGAAGCTGTTCATCCATGGAACAGCTCATGAGCATTTCATGAACTTTTTGTTGAGAATCCCAAACTTAAGGGATGTACAGCTTAGAGCAGACTATTATCCGGCGCCGGAGAACGATATGAGCACAGAGATGAGAGTTGGTTCGTGTAGCCGATTCGAGGACCAATTGAACAGCCGCAACATCATTGACTGA
Protein Sequence
- >AT2G42620.1
MASTTLSDLPDVILSTISSLVSDSRARNSLSLVSHKFLALERSTRSHLTIRGNARDLSLVPDCFRSISHLDLSFLSPWGHTLLASLPIDHQNLLALRLKFCFPFVESLNVYTRSPSSLELLLPQWPRIRHIKLLRWHQRASQIPTGGDFVPIFEHCGGFLESLDLSNFYHWTEDLPPVLLRYADVAARLTRLDLLTASFTEGYKSSEIVSITKSCPNLKTFRVACTFDPRYFEFVGDETLSAVATSSPKLTLLHMVDTASLANPRAIPGTEAGDSAVTAGTLIEVFSGLPNLEELVLDVGKDVKHSGVALEALNSKCKKLRVLKLGQFQGVCSATEWRRLDGVALCGGLQSLSIKNSGDLTDMGLVAIGRGCCKLTTFEIQGCENVTVDGLRTMVSLRSKTLTDVRISCCKNLDTAASLKAIEPICDRIKRLHIDCVWSGSEDEEVEGRVETSEADHEEEDDGYERSQKRCKYSFEEEHCSTSDVNGFCSEDRVWEKLEYLSLWINVGEFLTPLPMTGLDDCPNLEEIRIKIEGDCRGKRRPAEPEFGLSCLALYPKLSKMQLDCGDTIGFALTAPPMQMDLSLWERFFLTGIGSLSLSELDYWPPQDRDVNQRSLSLPGAGLLQECLTLRKLFIHGTAHEHFMNFLLRIPNLRDVQLRADYYPAPENDMSTEMRVGSCSRFEDQLNSRNIID