Gene Details:
- Gene ID: AT1G02860
- Gene Symbol: BAH1, NLA, SYG1
- Gene Name: BENZOIC ACID HYPERSENSITIVE 1, nitrogen limitation adaptation
- Description: SPX (SYG1/Pho81/XPR1) domain-containing protein;(source:Araport11)
- TAIR Accession:
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0000013 — cauline leaf — hoja caulinar (Spanish, exact), 茎生葉、茎葉 (Japanese, exact)
- PO:0000230 — inflorescence meristem — meristema de la inflorescencia (Spanish, exact), 花序分裂組織 (Japanese, exact)
- PO:0009010 — seed — semilla (Spanish, exact), 種子 (Japanese, exact), pyrene (narrow), diaspore (broad)
- PO:0009030 — carpel — carpelo (Spanish, exact), 心皮 (Japanese, exact), Poaceae carpel (narrow), Zea carpel (narrow), pistil (broad)
- PO:0009032 — petal — pétalo (Spanish, exact), 花弁 (Japanese, exact)
- PO:0009047 — stem — caña (Spanish, exact), culm (exact), eje primario (Spanish, exact), primary axis (exact), primary stem (exact), tallo (Spanish, exact), tronco (Spanish, exact), 茎 (Japanese, exact), bole (narrow), cane (narrow), caudex (narrow), caudices (narrow), core (narrow), primocane (narrow), scape (narrow), stalk (narrow), trunk (narrow)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
- PO:0000014 — rosette leaf — hoja en roseta (Spanish, exact), ロゼット葉 (Japanese, exact)
- PO:0009005 — root — raíz (Spanish, exact), radices (exact, plural), radix (exact), 根 (Japanese, exact), aerial root (narrow), climbing root (narrow)
- PO:0009029 — stamen — estambre (Spanish, exact), 雄蕊 (Japanese, exact), Poaceae stamen (narrow), Zea stamen (narrow)
- PO:0009031 — sepal — sépalo (Spanish, exact), がく片 (Japanese, exact)
- PO:0009046 — flower — flor (Spanish, exact), 花 (Japanese, exact), floret (related), Asteraceae floret (narrow), basal flower (narrow), double flower (narrow), hermaphrodite flower (narrow), monoclinous flower (narrow), perfect flower (narrow)
- PO:0009052 — inflorescence flower pedicel — 小花柄 (Japanese, related), pedicelo (Spanish, broad)
- PO:0009062 — gynoecium — ginoecio (Spanish, exact), gynaecium (exact), gynoecia (exact, plural), 雌蕊群 (Japanese, exact), Poaceae gynoecium (narrow), Zea gynoecium (narrow), apocarpous gynoecium (narrow), gynoecium of ear floret (narrow), gynoecium of lower floret of pedicellate spikelet of ear (narrow), gynoecium of lower floret of pedicellate spikelet of tassel (narrow), gynoecium of lower floret of sessile spikelet of ear (narrow), gynoecium of lower floret of sessile spikelet of tassel (narrow), gynoecium of tassel floret (narrow), gynoecium of upper floret of pedicellate spikelet of ear (narrow), gynoecium of upper floret of pedicellate spikelet of tassel (narrow), gynoecium of upper floret of sessile spikelet of ear (narrow), gynoecium of upper floret of sessile spikelet of tassel (narrow), syncarpous gynoecium (narrow), pistil (broad)
- PO:0009064 — receptacle — flower receptacle (exact), receptáculo (Spanish, exact), tori (exact, plural), torus (exact), 花床(花托) (Japanese, exact)
- PO:0000293 — guard cell — célula guardiana (Spanish, exact), occlusive cell (exact), 孔辺細胞 (Japanese, exact)
Germplasm Phenotype:
- bah1-D — Exhibits spontaneous cell death in leaves after bolting and increased salicylic acid levels and localized cell death after inoculation with Pst DC3000.
- nla — In contrast to wild type, anthocyanin accumulation did not occur in the senescing mutant rosette leaves.
- nla — Mutants failed to adapt to the conditions of nitrogen limitation and started senescence much earlier and more rapidly than did wild-type plants supplied with 3 mM nitrate: mutant plants supplied with 10 mM nitrate had a similar pattern of growth and development to wild type. When the nitrate concentration was reduced to 3 mM, the mutant plants started senescence in the fifth rosette leaf at 24 DAG, and after this point senescence progressed rapidly with all rosette leaves showing senescence symptoms at 26 DAG, and the whole rosette dying at 32 DAG. In contrast, wild-type plants displayed no senescence symptoms in the fifth rosette leaf until 32 DAG. In wild-type plants, the process of senescence proceeded slowly and gradually from the fifth to the youngest rosette leaves, and it took at least 2 weeks for all rosette leaves to show the senescence symptoms.
- nla — The cauline leaves in the mutant plants started senescence at 28 DAG, at least 10 days earlier than those in the wild-type plants. Further, the developing mutant siliques initiated senescence in their tips at 32 DAG, while the wild-type siliques showed no senescence symptoms throughout their development but accumulated abundant anthocyanin which was not observed in the mutant siliques.
- nla — The early senescence process was arrested when nitrate was added after depletion.
- nla — The occurrence (at 24 DAG) and progression (at 28 DAG) of senescence in mutant rosette leaves were not accompanied by a significant reduction in the amounts of nitrogen-containing compounds: nitrate, total amino acids, soluble proteins, and total nitrogen. By contrast, they were largely reduced in the wild-type plants.
- nla — With the reduction of the nitrate concentration to 1 mM, the occurrence of the senescence phenotype in the rosette leaves of mutant plants was accelerated to 20 DAG, and severe senescence in the developing mutant siliques resulted in their death around 30 DAG without producing viable seeds. Under the same growth condition (1 mM nitrate), wild-type plants did not start senescence in their rosette leaves until 26 DAG, and produced fecund siliques.
Function-related keywords:
- cauline leaf , inflorescence meristem , seed , carpel , petal , stem , pollen , cauline leaf , rosette leaf , root , stamen , sepal , flower , stem , inflorescence flower pedicel , gynoecium , receptacle , guard cell
Literature:
- IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. DOI: 10.1007/s11033-009-9776-z ; PMID: 19728150
- The signalling peptide EPFL9 is a positive regulator of stomatal development. DOI: 10.1111/j.1469-8137.2010.03200.x ; PMID: 20149115
- The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. DOI: 10.1105/tpc.110.078691 ; PMID: 21169508
- Regulation of stomatal density by the GTL1 transcription factor for improving water use efficiency. DOI: 10.4161/psb.6.7.15254 ; PMID: 21691149
- Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development. DOI: 10.1007/s00425-012-1617-y ; PMID: 22407427
- Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. DOI: 10.1371/journal.pone.0032925 ; PMID: 22396800
- Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. DOI: 10.1038/nature13452 ; PMID: 25043023
- Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. DOI: 10.1093/jxb/erv233 ; PMID: 26002974
- LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls. DOI: 10.1105/tpc.15.00783 ; PMID: 26917680
- The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development. DOI: 10.1038/srep27042 ; PMID: 27245096
- Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis. DOI: 10.1007/s00425-019-03334-9 ; PMID: 31907619
- Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. DOI: 10.1111/jipb.13536 ; PMID: 37226855
- The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. DOI: 10.1093/emboj/20.8.1875 ; PMID: 11296221
- Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. DOI: 10.1007/s00425-002-0890-6 ; PMID: 12430019
- The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. DOI: 10.1046/j.1365-313x.2003.016012.x ; PMID: 12943546
- Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. DOI: 10.1007/s00122-003-1381-2 ; PMID: 12942173
- Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. DOI: 10.1104/pp.103.027045 ; PMID: 14684837
- Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. DOI: 10.1091/mbc.e03-11-0831 ; PMID: 15133126
- Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. DOI: 10.1534/genetics.106.063628 ; PMID: 17028323
- The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. DOI: 10.1074/jbc.M607926200 ; PMID: 17098742
- The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. DOI: 10.1105/tpc.106.049981 ; PMID: 17905899
- Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. DOI: 10.1104/pp.107.109587 ; PMID: 18065561
- The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. DOI: 10.1074/jbc.M109.030247 ; PMID: 19797057
- Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. DOI: 10.1073/pnas.1013964107 ; PMID: 21078981
- Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. DOI: 10.1007/s00438-011-0631-2 ; PMID: 21698461
Sequences:
cDNA Sequence
- >AT1G02860.3
ATGTTCCCAAAACAAACGTTTTGACTTTTTTTTTGTTTTCTCATATTCTTTTATTTCACAACTTGTTATTTCCGCCGACTTCACCAGTCACCACCACCTTCATTTATTCATAAATACGTCTCTGTTCTGTTTTTGTTTCTGTTTCATTTTCATACATAATTAAGCCAACACGAGACGCAAGAGAGAGATAGGGAAAGAGATAAGAGCGACTCTGTTTTGTTGATCAAAATCCTTTTTTTTTGTTTGAGGGCTGAATTTGTTTGTTGATGGTCATCTAAATTTGTAACCTTTATCTGTTTTATTGAGTTGTGAAATTCAGAGAAAAAATAAATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG - >AT1G02860.1
ATGTTCCCAAAACAAACGTTTTGACTTTTTTTTTGTTTTCTCATATTCTTTTATTTCACAACTTGTTATTTCCGCCGACTTCACCAGTCACCACCACCTTCATTTATTCATAAATACGTCTCTGTTCTGTTTTTGTTTCTGTTTCATTTTCATACATAATTAAGCCAACACGAGACGCAAGAGAGAGATAGGGAAAGAGATAAGAGCGACTCTGTTTTGTTGATCAAAATCCTTTTTTTTTGTTTGAGGGCTGAATTTGTTTGTTGATGGTCATCTAAATTTGTAACCTTTATCTGTTTTATTGAGTTGTGAAATTCAGAGAAAAAATAAATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG - >AT1G02860.2
ATGTTCCCAAAACAAACGTTTTGACTTTTTTTTTGTTTTCTCATATTCTTTTATTTCACAACTTGTTATTTCCGCCGACTTCACCAGTCACCACCACCTTCATTTATTCATAAATACGTCTCTGTTCTGTTTTTGTTTCTGTTTCATTTTCATACATAATTAAGCCAACACGAGACGCAAGAGAGAGATAGGGAAAGAGATAAGAGCGACTCTGTTTTGTTGATCAAAATCCTTTTTTTTTGTTTGAGGGCTGAATTTGTTTGTTGATGGTCATCTAAATTTGTAACCTTTATCTGTTTTATTGAGTTGTGAAATTCAGAGAAAAAATAAATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG
CDS Sequence
- >AT1G02860.3
ATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG - >AT1G02860.1
ATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG - >AT1G02860.2
ATGAAGTTTTGTAAGAAGTATGAAGAGTACATGCAAGGACAGAAGGAGAAGAAGAATCTTCCTGGTGTTGGGTTTAAGAAACTCAAGAAGATTCTCAAGAGATGCAGGAGAAATCATGTTCCTTCTAGAATTTCTTTTACTGATGCAATCAACCACAATTGTTCTCGTGAATGCCCAGTTTGTGATGGGACTTTTTTCCCGGAGCTTCTCAAGGAAATGGAAGATGTTGTTGGATGGTTTAACGAGCATGCTCAGAAGCTTCTTGAGCTTCATTTAGCTTCTGGTTTTACAAAGTGTCTTACTTGGCTCAGAGGCAACAGTCGAAAAAAGGACCATCATGGTTTGATCCAAGAGGGTAAAGATTTGGTTAATTACGCTCTCATCAATGCCGTCGCCATTCGAAAAATCCTCAAGAAATATGACAAGATTCATGAGTCTAGGCAAGGACAAGCGTTTAAGACTCAGGTCCAGAAAATGCGAATAGAAATCCTTCAGTCACCGTGGCTCTGCGAGCTTATGGCGTTTCACATCAATCTGAAAGAATCTAAGAAGGAATCTGGAGCTACTATAACTTCTCCTCCTCCTCCTGTTCATGCATTGTTTGATGGTTGCGCTTTGACTTTCGACGATGGGAAGCCTTTACTTTCCTGCGAGCTCTCTGATTCCGTCAAAGTTGACATTGACTTGACTTGTTCAATATGCCTGGTAAGAAACTTAAGAAGAATCTCAATGTAG
Protein Sequence
- >AT1G02860.3
MKFCKKYEEYMQGQKEKKNLPGVGFKKLKKILKRCRRNHVPSRISFTDAINHNCSRECPVCDGTFFPELLKEMEDVVGWFNEHAQKLLELHLASGFTKCLTWLRGNSRKKDHHGLIQEGKDLVNYALINAVAIRKILKKYDKIHESRQGQAFKTQVQKMRIEILQSPWLCELMAFHINLKESKKESGATITSPPPPVHALFDGCALTFDDGKPLLSCELSDSVKVDIDLTCSICLVRNLRRISM - >AT1G02860.1
MKFCKKYEEYMQGQKEKKNLPGVGFKKLKKILKRCRRNHVPSRISFTDAINHNCSRECPVCDGTFFPELLKEMEDVVGWFNEHAQKLLELHLASGFTKCLTWLRGNSRKKDHHGLIQEGKDLVNYALINAVAIRKILKKYDKIHESRQGQAFKTQVQKMRIEILQSPWLCELMAFHINLKESKKESGATITSPPPPVHALFDGCALTFDDGKPLLSCELSDSVKVDIDLTCSICLVRNLRRISM - >AT1G02860.2
MKFCKKYEEYMQGQKEKKNLPGVGFKKLKKILKRCRRNHVPSRISFTDAINHNCSRECPVCDGTFFPELLKEMEDVVGWFNEHAQKLLELHLASGFTKCLTWLRGNSRKKDHHGLIQEGKDLVNYALINAVAIRKILKKYDKIHESRQGQAFKTQVQKMRIEILQSPWLCELMAFHINLKESKKESGATITSPPPPVHALFDGCALTFDDGKPLLSCELSDSVKVDIDLTCSICLVRNLRRISM