Gene Details:
- Gene ID: AT1G02580
- Gene Symbol: EMB173, FIS1, MEA, SDG5
- Gene Name: EMBRYO DEFECTIVE 173, FERTILIZATION INDEPENDENT SEED 1, MEDEA, SET DOMAIN-CONTAINING PROTEIN 5
- Description: SET domain-containing protein;(source:Araport11)
- TAIR Accession: locus:2196110
- Genome: Araport11_genome_release
- Species: Arabidopsis thaliana
Transcripts:
Plant Ontology Annotations:
- PO:0020003 — plant ovule — óvulo vegetal (Spanish, exact), 胚珠 (Japanese, exact), Poaceae ovule (narrow), Zea ovule (narrow)
- PO:0025074 — embryo sac — saco embrionario (Spanish, exact), 胚嚢 (Japanese, exact)
- PO:0025281 — pollen — polen (Spanish, exact), pollen grain (exact), 花粉 (Japanese, exact)
Gene Ontology:
- GO:0031507 — involved in — heterochromatin formation
- GO:0005515 — enables — protein binding
- GO:0043565 — enables — sequence-specific DNA binding
- GO:0005634 — located in — nucleus
- GO:0042054 — enables — histone methyltransferase activity
- GO:0048317 — acts upstream of or within — seed morphogenesis
- GO:2000014 — acts upstream of or within — regulation of endosperm development
- GO:0006349 — acts upstream of or within — regulation of gene expression by genomic imprinting
- GO:0005634 — is active in — nucleus
- GO:0009646 — acts upstream of or within — response to absence of light
- GO:0003682 — enables — chromatin binding
- GO:0046976 — enables — histone H3K27 methyltransferase activity
- GO:0045892 — acts upstream of or within — negative regulation of DNA-templated transcription
- GO:0010484 — enables — histone H3 acetyltransferase activity
- GO:0031519 — part of — PcG protein complex
- GO:0006338 — involved in — chromatin remodeling
Germplasm Phenotype:
- CS6996 — Autonomous seed development is initiated in absence of fertilization, with a penetrance of about 40-50%; autonomous seeds do not contain an embryo but only endosperm; autonomous endosperm development is accompanied by increase in pistil elongation and ovule size, leading to a small developing seed that contains endosperm. Abnormal development of the endosperm posterior pole with a cyst and nodules larger than in the wild type; ectopic location of nodules in the peripheral endosperm; absence of cellularisation and overproliferation at late stages. Embryos are indistinguishable from wild-type siblings during early stages of embryogenesis, visible differences begin at the late globular stage. Gametophytic maternal effect results in embryo lethality.
- CS6997 — Autonomous seed development is initiated in absence of fertilization, with a penetrance of about 40-50%; autonomous seeds do not contain an embryo but only endosperm; autonomous endosperm development is accompanied by increase in pistil elongation and ovule size, leading to a small developing seed that contains endosperm. Abnormal development of the endosperm posterior pole with a cyst and nodules larger than in the wild type; ectopic location of nodules in the peripheral endosperm; absence of cellularisation and overproliferation at late stages. Embryos are indistinguishable from wild-type siblings during early stages of embryogenesis, visible differences begin at the late globular stage. Gametophytic maternal effect results in embryo lethality.
- mea-1 — Heterozygous embryos abort if the mutant allele is derived from the female, but develop normally if it is derived from the male. Embryos derived from mutant eggs abort irrespective of the paternal contribution. Thus, the mea mutant displays maternal-effect embryo lethality.
- mea-1 — In the homozygous progeny: During early stages of embryogenesis the development of mea-1 embryos is indistinguishable from wild-type siblings in cleared or sectioned specimens. Visible differences between wild-type and mea-1 embryos began at the late globular stage. Globular mea-1 embryos show excess cell proliferation and enlarge radially symmetrical. When wild-type embryos reach the mid to late heart stage, sibling mea-1 embryos are still globular and contain small vacuolated cells with curvilinear cell walls and sometimes irregular cell divisions in the ground tissue and procambium. Suspensor and hypophysis are normal, and cotyledons initiate synchronously as in the wild type. Thus, despite increased cell proliferation and occasional irregular cytokinesis, morphogenetic progression is normal. However, each stage is prolonged and includes more division cycles, and morphogenesis is delayed. As a consequence, giant heart stage mea-1 embryos are present along with late torpedo or cotyledonary stage wild-type embryos. mea-1 heart stage embryos have supernumerary cell layers. When wild-type siblings are fully differentiated, most mea-1 embryos have reached the late heart stage and are up to 10 times larger than normal. mea embryos degenerate during desiccation. These results suggest that mea controls cell proliferation during embryogenesis, allowing morphogenesis to progress normally, albeit slowly. Endosperm development in mea-1 seeds is indistinguishable from that of the wild type at early stages. When cellularization begins normally in wild-type seeds at the transition from the globular to the heart stage, no cellularization is observed in sibling mea-1 seeds. Although nuclear divisions take place more slowly in mea-1 endosperm, the distribution of endosperm nuclei is as in the wild type. Partial cellularization occurs at the micropyle when mea-1 embryos reach the late heart stage in desiccating seeds, but because fewer nuclei have been generated, most of the central cell is devoid of nuclei. Thus, in mea-1 seeds, the development of both fertilization products is delayed but morphogenesis proceeds normally, and it appears that the embryo shows increased cell proliferation at the expense of the endosperm.
- mea-1 — The homozygous progeny is embryo-lethal.
- mea-2 — Mutant homozygous mea embryo sacs accumulated 45 times more maternal transcripts than wild-type before fertilization, and it persisted after fertilization (7.5 times more transcripts 4 d after pollination.
- mea-2 — Similar to non-revertant mea-1 mutant.
- mea-2 — The homozygous progeny is embryo-lethal.
Function-related keywords:
Literature:
- Tetrapyrrole metabolism is involved in lesion formation, cell death, in the Arabidopsis lesion initiation 1 mutant. DOI: 10.1271/bbb.69.1929 ; PMID: 16244444
- A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. DOI: 10.1007/s00299-013-1403-8 ; PMID: 23462936
- Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying and up-regulation. DOI: 10.1093/jxb/ert227 ; PMID: 24064926
- Transcriptional Regulation of Tetrapyrrole Biosynthesis in Arabidopsis thaliana. DOI: 10.3389/fpls.2016.01811 ; PMID: 27990150
- Shade represses photosynthetic genes by disrupting the DNA binding of GOLDEN2-LIKE1. DOI: 10.1093/plphys/kiad029 ; PMID: 36702576
- A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. DOI: 10.1007/BF00021417 ; PMID: 8219054
- Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. DOI: 10.1016/j.phytochem.2008.04.007 ; PMID: 18538804
- MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. DOI: 10.1073/pnas.0509463102 ; PMID: 16387852
- Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. DOI: 10.1104/pp.106.090167 ; PMID: 17085508
- Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2007.03079.x ; PMID: 17425720
- Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. DOI: 10.1105/tpc.108.058040 ; PMID: 18757557
- The E-Subgroup Pentatricopeptide Repeat Protein Family in Arabidopsis thaliana and Confirmation of the Responsiveness PPR96 to Abiotic Stresses. DOI: 10.3389/fpls.2016.01825 ; PMID: 27994613
- Naf1 p is a box H/ACA snoRNP assembly factor. DOI: NA ; PMID: 12515383
- Secretory carrier membrane proteins. DOI: 10.1007/s00709-011-0295-0 ; PMID: 21633931
- Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. DOI: 10.1534/genetics.106.062588 ; PMID: 16951057
- Plant PP2C phosphatases: emerging functions in stress signaling. DOI: 10.1016/j.tplants.2004.03.007 ; PMID: 15130549
- Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. DOI: 10.1186/1471-2164-9-550 ; PMID: 19021904
- Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. DOI: 10.1111/j.1365-313X.2007.03371.x ; PMID: 18036199
- Proteome map of the chloroplast lumen of Arabidopsis thaliana. DOI: 10.1074/jbc.M108575200 ; PMID: 11719511
- A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. DOI: 10.1007/s11103-006-0031-x ; PMID: 16897475
- Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. DOI: 10.1186/1471-2164-8-281 ; PMID: 17705847
- Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. DOI: 10.1104/pp.107.105866 ; PMID: 17827269
- LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. DOI: 10.1074/jbc.M110.105064 ; PMID: 20444695
- Structure of Psb27 in solution: implications for transient binding to photosystem II during biogenesis and repair. DOI: 10.1021/bi9012726 ; PMID: 19697957
- PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity. DOI: 10.1073/pnas.1424040112 ; PMID: 25605904
- Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. DOI: 10.1016/j.plaphy.2014.02.013 ; PMID: 24656878
- Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. DOI: 10.1007/s11120-017-0450-3 ; PMID: 29098572
- Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. DOI: 10.1111/pce.13811 ; PMID: 32495939
- The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. DOI: 10.1104/pp.105.068171 ; PMID: 16258011
- Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface. DOI: 10.7554/eLife.71061 ; PMID: 34591014
- Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. DOI: 10.1016/s0014-5793(00)01568-4 ; PMID: 10838072
- and phytochrome regulation of nuclear gene expression. DOI: 10.1104/pp.118.3.803 ; PMID: 9808724
- Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. DOI: 10.1105/tpc.10.2.283 ; PMID: 9490750
- Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. DOI: 10.1046/j.1365-313x.1997.00649.x ; PMID: 9351249
- Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. DOI: 10.1007/BF00042226 ; PMID: 8790286
- Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. DOI: 10.1046/j.1365-313x.1996.09040513.x ; PMID: 8624514
- Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. DOI: 10.1105/tpc.8.4.601 ; PMID: 8624438
- Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. DOI: 10.1104/pp.108.4.1505 ; PMID: 7659751
- Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). DOI: 10.1007/BF00019210 ; PMID: 1581573
- Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. DOI: 10.1007/BF00023426 ; PMID: 1714319
- Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. DOI: 10.1104/pp.124.4.1678 ; PMID: 11115885
- Altered etioplast development in phytochrome chromophore-deficient mutants. DOI: 10.1007/s004250100624 ; PMID: 11800397
- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. DOI: 10.1023/a:1013699721301 ; PMID: 11785941
- Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. DOI: 10.1006/bbrc.2002.6543 ; PMID: 11866453
- NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. DOI: 10.1023/A:1006418608647 ; PMID: 16228453
- Chlorophyll Synthesis in a Deetiolated (det340) Mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and Photoactive PChlide-F655. DOI: 10.1105/tpc.7.12.2081 ; PMID: 12242369
- Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. DOI: 10.1104/pp.003806 ; PMID: 12226519
- An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. DOI: 10.1046/j.1365-313x.2003.01798.x ; PMID: 12848821
- Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. DOI: 10.1093/pcp/pcg128 ; PMID: 14581621
- Substrate-dependent and organ-specific chloroplast protein import in planta. DOI: 10.1105/tpc.015008 ; PMID: 14688290
- The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation. DOI: 10.1111/j.1365-313X.2004.02243.x ; PMID: 15546351
- A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. DOI: 10.1073/pnas.0610934104 ; PMID: 17261815
- PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. DOI: 10.1073/pnas.0803611105 ; PMID: 18591656
- Prolamellar bodies formed by cyanobacterial protochlorophyllide oxidoreductase in Arabidopsis. DOI: 10.1111/j.1365-313X.2009.03833.x ; PMID: 19222806
- Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. DOI: 10.1073/pnas.0610062104 ; PMID: 17202255
- A pentapeptide motif related to a pigment binding site in the major light-harvesting protein of photosystem II, LHCII, governs substrate-dependent plastid import of NADPH:protochlorophyllide oxidoreductase A. DOI: 10.1104/pp.108.120113 ; PMID: 18441218
- Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. DOI: 10.1007/s11103-009-9582-y ; PMID: 20012672
- Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. DOI: 10.1371/journal.pone.0026532 ; PMID: 22031838
- GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. DOI: 10.1371/journal.pone.0026765 ; PMID: 22102866
- Arabidopsis light-dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. DOI: 10.1007/s11103-012-9873-6 ; PMID: 22278767
- FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg(++)-branch of this pathway. DOI: 10.1016/j.febslet.2011.12.029 ; PMID: 22212719
- Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. DOI: 10.1371/journal.pgen.1004519 ; PMID: 25101599
- Photoactive protochlorophyllide-enzyme complexes reconstituted with PORA, PORB and PORC proteins of A. thaliana: fluorescence and catalytic properties. DOI: 10.1371/journal.pone.0116990 ; PMID: 25659137
- REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. DOI: 10.1007/s11120-015-0146-5 ; PMID: 25910753
- The SWI2/SNF2 Chromatin-Remodeling ATPase BRAHMA Regulates Chlorophyll Biosynthesis in Arabidopsis. DOI: 10.1016/j.molp.2016.11.003 ; PMID: 27865928
- Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. DOI: 10.1007/s00709-019-01467-y ; PMID: 31909436
- Arabidopsis JMJ17 promotes cotyledon greening during de-etiolation by repressing genes involved in tetrapyrrole biosynthesis in etiolated seedlings. DOI: 10.1111/nph.17327 ; PMID: 33666236
- Unique nucleotide polymorphism of ankyrin gene cluster in Arabidopsis. DOI: 10.1007/s12041-007-0004-0 ; PMID: 17656846
- The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. DOI: 10.1016/s0378-1119(99)00448-5 ; PMID: 10580150
- Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. DOI: 10.1046/j.0960-7412.2000.00943.x ; PMID: 11169189
- The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show and long-term exposure to low temperature. DOI: 10.1111/j.1365-313X.2006.02821.x ; PMID: 16923014
- A novel extended family of stromal thioredoxins. DOI: 10.1007/s11103-009-9471-4 ; PMID: 19259774
- Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. DOI: 10.1093/jxb/ers028 ; PMID: 22442409
- A proteomic strategy for global analysis of plant protein complexes. DOI: 10.1105/tpc.114.127563 ; PMID: 25293756
- Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. DOI: 10.1111/tpj.13049 ; PMID: 26468055
- Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests. DOI: 10.1016/j.fob.2015.10.001 ; PMID: 26605137
- M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. DOI: 10.1007/s00299-017-2229-6 ; PMID: 29080907
- M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1. DOI: 10.1105/tpc.20.00304 ; PMID: 33037145
- The plant thioredoxin system. DOI: 10.1007/s00018-004-4296-4 ; PMID: 15619004
- Identification of multiple salicylic acid-binding proteins using two high throughput screens. DOI: 10.3389/fpls.2014.00777 ; PMID: 25628632
- Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family. DOI: 10.1104/pp.114.239137 ; PMID: 24920445
- The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. DOI: 10.1111/j.1365-313X.2004.02052.x ; PMID: 15078335
- Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. DOI: 10.1094/MPMI-21-2-0244 ; PMID: 18184068
- Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. DOI: 10.1534/genetics.105.051664 ; PMID: 16547115
- Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. DOI: 10.1111/j.1365-313X.2006.02927.x ; PMID: 17227544
Sequences:
cDNA Sequence
- >AT1G02580.2
CTTTGCATTATCCTTTTCACCAACATCAGAGAAGACGAGAAAAAAAGAAGAGGCGAGTGGTTAATGGAGAAGGAAAACCATGAGGACGATGGTGAGGGTTTGCCACCCGAACTAAATCAGATAAAAGAGCAAATCGAAAAGGAGAGATTTCTGCATATCAAGAGAAAATTCGAGCTGAGATACATTCCAAGTGTGGCTACTCATGCTTCACACCATCAATCGTTTGACTTAAACCAGCCCGCTGCAGAGGATGATAATGGAGGAGACAACAAATCACTTTTGTCGAGAATGCAAAACCCACTTCGTCATTTCAGTGCCTCATCTGATTATAATTCTTACGAAGATCAAGGTTATGTTCTTGATGAGGATCAAGATTATGCTCTTGAAGAAGATGTACCATTATTTCTTGATGAAGATGTACCATTATTACCAAGTGTCAAGCTTCCAATTGTTGAGAAGCTACCACGATCCATTACATGGGTCTTCACCAAAAGTAGCCAGCTGATGGCTGAAAGTGATTCTGTGATTGGTAAGAGACAAATCTATTATTTGAATGGTGAGGCACTAGAATTGAGCAGTGAAGAAGATGAGGAAGATGAAGAAGAAGATGAGGAAGAAATCAAGAAAGAAAAATGCGAATTTTCTGAAGATGTAGACCGATTTATATGGACGGTTGGGCAGGACTATGGTTTGGATGATCTGGTCGTGCGGCGTGCTCTCGCCAAGTACCTCGAAGTGGATGTTTCGGACATATTGGAAAGATACAATGAACTCAAGCTTAAGAATGATGGAACTGCTGGTGAGGCTTCTGATTTGACATCCAAGACAATAACTACTGCTTTCCAGGATTTTGCTGATAGACGTCATTGCCGTCGTTGCATGATATTCGATTGTCATATGCATGAGAAGTATGAGCCCGAGTCTAGATCCAGCGAAGACAAATCTAGTTTGTTTGAGGATGAAGATAGACAACCATGCAGTGAGCATTGTTACCTCAAGGTGAGGAGTGTGACAGAAGCTGATCATGTGATGGATAATGATAACTCTATATCAAACAAGATTGTGGTCTCAGATCCAAACAACACTATGTGGACGCCTGTAGAGAAGGATCTTTACTTGAAAGGAATTGAGATATTTGGGAGAAACAGTTGTGATGTTGCATTAAACATACTTCGGGGGCTTAAGACGTGCCTAGAGATTTACAATTACATGCGCGAACAAGATCAATGTACTATGTCATTAGACCTTAACAAAACTACACAAAGACACAATCAGGTTACCAAAAAAGTATCTCGAAAAAGTAGTAGGTCGGTCCGCAAAAAATCGAGACTCCGAAAATATGCTCGTTATCCGCCTGCTTTAAAGAAAACAACTAGTGGAGAAGCTAAGTTTTATAAGCACTACACACCATGCACTTGCAAGTCAAAATGTGGACAGCAATGCCCTTGTTTAACTCACGAAAATTGCTGCGAGAAATATTGCGGGTGCTCAAAGGATTGCAACAATCGCTTTGGAGGATGTAATTGTGCAATTGGCCAATGCACAAATCGACAATGTCCTTGTTTTGCTGCTAATCGTGAATGCGATCCAGATCTTTGTCGGAGTTGTCCTCTTAGCTGTGGAGATGGCACTCTTGGTGAGACACCAGTGCAAATCCAATGCAAGAACATGCAATTCCTCCTTCAAACCAATAAAAAGATTCTCATTGGAAAGTCTGATGTTCATGGATGGGGTGCATTTACATGGGTAAGCAATCATGTAAATATAAGAATAAGTTTAATAGTTATTGGTGCATTCATAACACTTTTTTTTTTTTAAT - >AT1G02580.1
CTTTGCATTATCCTTTTCACCAACATCAGAGAAGACGAGAAAAAAAGAAGAGGCGAGTGGTTAATGGAGAAGGAAAACCATGAGGACGATGGTGAGGGTTTGCCACCCGAACTAAATCAGATAAAAGAGCAAATCGAAAAGGAGAGATTTCTGCATATCAAGAGAAAATTCGAGCTGAGATACATTCCAAGTGTGGCTACTCATGCTTCACACCATCAATCGTTTGACTTAAACCAGCCCGCTGCAGAGGATGATAATGGAGGAGACAACAAATCACTTTTGTCGAGAATGCAAAACCCACTTCGTCATTTCAGTGCCTCATCTGATTATAATTCTTACGAAGATCAAGGTTATGTTCTTGATGAGGATCAAGATTATGCTCTTGAAGAAGATGTACCATTATTTCTTGATGAAGATGTACCATTATTACCAAGTGTCAAGCTTCCAATTGTTGAGAAGCTACCACGATCCATTACATGGGTCTTCACCAAAAGTAGCCAGCTGATGGCTGAAAGTGATTCTGTGATTGGTAAGAGACAAATCTATTATTTGAATGGTGAGGCACTAGAATTGAGCAGTGAAGAAGATGAGGAAGATGAAGAAGAAGATGAGGAAGAAATCAAGAAAGAAAAATGCGAATTTTCTGAAGATGTAGACCGATTTATATGGACGGTTGGGCAGGACTATGGTTTGGATGATCTGGTCGTGCGGCGTGCTCTCGCCAAGTACCTCGAAGTGGATGTTTCGGACATATTGGAAAGATACAATGAACTCAAGCTTAAGAATGATGGAACTGCTGGTGAGGCTTCTGATTTGACATCCAAGACAATAACTACTGCTTTCCAGGATTTTGCTGATAGACGTCATTGCCGTCGTTGCATGATATTCGATTGTCATATGCATGAGAAGTATGAGCCCGAGTCTAGATCCAGCGAAGACAAATCTAGTTTGTTTGAGGATGAAGATAGACAACCATGCAGTGAGCATTGTTACCTCAAGGTGAGGAGTGTGACAGAAGCTGATCATGTGATGGATAATGATAACTCTATATCAAACAAGATTGTGGTCTCAGATCCAAACAACACTATGTGGACGCCTGTAGAGAAGGATCTTTACTTGAAAGGAATTGAGATATTTGGGAGAAACAGTTGTGATGTTGCATTAAACATACTTCGGGGGCTTAAGACGTGCCTAGAGATTTACAATTACATGCGCGAACAAGATCAATGTACTATGTCATTAGACCTTAACAAAACTACACAAAGACACAATCAGGTTACCAAAAAAGTATCTCGAAAAAGTAGTAGGTCGGTCCGCAAAAAATCGAGACTCCGAAAATATGCTCGTTATCCGCCTGCTTTAAAGAAAACAACTAGTGGAGAAGCTAAGTTTTATAAGCACTACACACCATGCACTTGCAAGTCAAAATGTGGACAGCAATGCCCTTGTTTAACTCACGAAAATTGCTGCGAGAAATATTGCGGGTGCTCAAAGGATTGCAACAATCGCTTTGGAGGATGTAATTGTGCAATTGGCCAATGCACAAATCGACAATGTCCTTGTTTTGCTGCTAATCGTGAATGCGATCCAGATCTTTGTCGGAGTTGTCCTCTTAGCTGTGGAGATGGCACTCTTGGTGAGACACCAGTGCAAATCCAATGCAAGAACATGCAATTCCTCCTTCAAACCAATAAAAAGATTCTCATTGGAAAGTCTGATGTTCATGGATGGGGTGCATTTACATGGGTAAGCAATCATGTAAATATAAGAATAAGTTTAATAGTTATTGGTGCATTCATAACACTTTTTTTTTTTTAAT
CDS Sequence
- >AT1G02580.2
ATGGAGAAGGAAAACCATGAGGACGATGGTGAGGGTTTGCCACCCGAACTAAATCAGATAAAAGAGCAAATCGAAAAGGAGAGATTTCTGCATATCAAGAGAAAATTCGAGCTGAGATACATTCCAAGTGTGGCTACTCATGCTTCACACCATCAATCGTTTGACTTAAACCAGCCCGCTGCAGAGGATGATAATGGAGGAGACAACAAATCACTTTTGTCGAGAATGCAAAACCCACTTCGTCATTTCAGTGCCTCATCTGATTATAATTCTTACGAAGATCAAGGTTATGTTCTTGATGAGGATCAAGATTATGCTCTTGAAGAAGATGTACCATTATTTCTTGATGAAGATGTACCATTATTACCAAGTGTCAAGCTTCCAATTGTTGAGAAGCTACCACGATCCATTACATGGGTCTTCACCAAAAGTAGCCAGCTGATGGCTGAAAGTGATTCTGTGATTGGTAAGAGACAAATCTATTATTTGAATGGTGAGGCACTAGAATTGAGCAGTGAAGAAGATGAGGAAGATGAAGAAGAAGATGAGGAAGAAATCAAGAAAGAAAAATGCGAATTTTCTGAAGATGTAGACCGATTTATATGGACGGTTGGGCAGGACTATGGTTTGGATGATCTGGTCGTGCGGCGTGCTCTCGCCAAGTACCTCGAAGTGGATGTTTCGGACATATTGGAAAGATACAATGAACTCAAGCTTAAGAATGATGGAACTGCTGGTGAGGCTTCTGATTTGACATCCAAGACAATAACTACTGCTTTCCAGGATTTTGCTGATAGACGTCATTGCCGTCGTTGCATGATATTCGATTGTCATATGCATGAGAAGTATGAGCCCGAGTCTAGATCCAGCGAAGACAAATCTAGTTTGTTTGAGGATGAAGATAGACAACCATGCAGTGAGCATTGTTACCTCAAGGTGAGGAGTGTGACAGAAGCTGATCATGTGATGGATAATGATAACTCTATATCAAACAAGATTGTGGTCTCAGATCCAAACAACACTATGTGGACGCCTGTAGAGAAGGATCTTTACTTGAAAGGAATTGAGATATTTGGGAGAAACAGTTGTGATGTTGCATTAAACATACTTCGGGGGCTTAAGACGTGCCTAGAGATTTACAATTACATGCGCGAACAAGATCAATGTACTATGTCATTAGACCTTAACAAAACTACACAAAGACACAATCAGGTTACCAAAAAAGTATCTCGAAAAAGTAGTAGGTCGGTCCGCAAAAAATCGAGACTCCGAAAATATGCTCGTTATCCGCCTGCTTTAAAGAAAACAACTAGTGGAGAAGCTAAGTTTTATAAGCACTACACACCATGCACTTGCAAGTCAAAATGTGGACAGCAATGCCCTTGTTTAACTCACGAAAATTGCTGCGAGAAATATTGCGGGTGCTCAAAGGATTGCAACAATCGCTTTGGAGGATGTAATTGTGCAATTGGCCAATGCACAAATCGACAATGTCCTTGTTTTGCTGCTAATCGTGAATGCGATCCAGATCTTTGTCGGAGTTGTCCTCTTAGCTGTGGAGATGGCACTCTTGGTGAGACACCAGTGCAAATCCAATGCAAGAACATGCAATTCCTCCTTCAAACCAATAAAAAGATTCTCATTGGAAAGTCTGATGTTCATGGATGGGGTGCATTTACATGGGTAAGCAATCATGTAAATATAAGAATAAGTTTAATAGTTATTGGTGCATTCATAACACTTTTTTTTTTTTAA - >AT1G02580.1
ATGGAGAAGGAAAACCATGAGGACGATGGTGAGGGTTTGCCACCCGAACTAAATCAGATAAAAGAGCAAATCGAAAAGGAGAGATTTCTGCATATCAAGAGAAAATTCGAGCTGAGATACATTCCAAGTGTGGCTACTCATGCTTCACACCATCAATCGTTTGACTTAAACCAGCCCGCTGCAGAGGATGATAATGGAGGAGACAACAAATCACTTTTGTCGAGAATGCAAAACCCACTTCGTCATTTCAGTGCCTCATCTGATTATAATTCTTACGAAGATCAAGGTTATGTTCTTGATGAGGATCAAGATTATGCTCTTGAAGAAGATGTACCATTATTTCTTGATGAAGATGTACCATTATTACCAAGTGTCAAGCTTCCAATTGTTGAGAAGCTACCACGATCCATTACATGGGTCTTCACCAAAAGTAGCCAGCTGATGGCTGAAAGTGATTCTGTGATTGGTAAGAGACAAATCTATTATTTGAATGGTGAGGCACTAGAATTGAGCAGTGAAGAAGATGAGGAAGATGAAGAAGAAGATGAGGAAGAAATCAAGAAAGAAAAATGCGAATTTTCTGAAGATGTAGACCGATTTATATGGACGGTTGGGCAGGACTATGGTTTGGATGATCTGGTCGTGCGGCGTGCTCTCGCCAAGTACCTCGAAGTGGATGTTTCGGACATATTGGAAAGATACAATGAACTCAAGCTTAAGAATGATGGAACTGCTGGTGAGGCTTCTGATTTGACATCCAAGACAATAACTACTGCTTTCCAGGATTTTGCTGATAGACGTCATTGCCGTCGTTGCATGATATTCGATTGTCATATGCATGAGAAGTATGAGCCCGAGTCTAGATCCAGCGAAGACAAATCTAGTTTGTTTGAGGATGAAGATAGACAACCATGCAGTGAGCATTGTTACCTCAAGGTGAGGAGTGTGACAGAAGCTGATCATGTGATGGATAATGATAACTCTATATCAAACAAGATTGTGGTCTCAGATCCAAACAACACTATGTGGACGCCTGTAGAGAAGGATCTTTACTTGAAAGGAATTGAGATATTTGGGAGAAACAGTTGTGATGTTGCATTAAACATACTTCGGGGGCTTAAGACGTGCCTAGAGATTTACAATTACATGCGCGAACAAGATCAATGTACTATGTCATTAGACCTTAACAAAACTACACAAAGACACAATCAGGTTACCAAAAAAGTATCTCGAAAAAGTAGTAGGTCGGTCCGCAAAAAATCGAGACTCCGAAAATATGCTCGTTATCCGCCTGCTTTAAAGAAAACAACTAGTGGAGAAGCTAAGTTTTATAAGCACTACACACCATGCACTTGCAAGTCAAAATGTGGACAGCAATGCCCTTGTTTAACTCACGAAAATTGCTGCGAGAAATATTGCGGGTGCTCAAAGGATTGCAACAATCGCTTTGGAGGATGTAATTGTGCAATTGGCCAATGCACAAATCGACAATGTCCTTGTTTTGCTGCTAATCGTGAATGCGATCCAGATCTTTGTCGGAGTTGTCCTCTTAGCTGTGGAGATGGCACTCTTGGTGAGACACCAGTGCAAATCCAATGCAAGAACATGCAATTCCTCCTTCAAACCAATAAAAAGATTCTCATTGGAAAGTCTGATGTTCATGGATGGGGTGCATTTACATGGGTAAGCAATCATGTAAATATAAGAATAAGTTTAATAGTTATTGGTGCATTCATAACACTTTTTTTTTTTTAA
Protein Sequence
- >AT1G02580.2
MEKENHEDDGEGLPPELNQIKEQIEKERFLHIKRKFELRYIPSVATHASHHQSFDLNQPAAEDDNGGDNKSLLSRMQNPLRHFSASSDYNSYEDQGYVLDEDQDYALEEDVPLFLDEDVPLLPSVKLPIVEKLPRSITWVFTKSSQLMAESDSVIGKRQIYYLNGEALELSSEEDEEDEEEDEEEIKKEKCEFSEDVDRFIWTVGQDYGLDDLVVRRALAKYLEVDVSDILERYNELKLKNDGTAGEASDLTSKTITTAFQDFADRRHCRRCMIFDCHMHEKYEPESRSSEDKSSLFEDEDRQPCSEHCYLKVRSVTEADHVMDNDNSISNKIVVSDPNNTMWTPVEKDLYLKGIEIFGRNSCDVALNILRGLKTCLEIYNYMREQDQCTMSLDLNKTTQRHNQVTKKVSRKSSRSVRKKSRLRKYARYPPALKKTTSGEAKFYKHYTPCTCKSKCGQQCPCLTHENCCEKYCGCSKDCNNRFGGCNCAIGQCTNRQCPCFAANRECDPDLCRSCPLSCGDGTLGETPVQIQCKNMQFLLQTNKKILIGKSDVHGWGAFTWVSNHVNIRISLIVIGAFITLFFF - >AT1G02580.1
MEKENHEDDGEGLPPELNQIKEQIEKERFLHIKRKFELRYIPSVATHASHHQSFDLNQPAAEDDNGGDNKSLLSRMQNPLRHFSASSDYNSYEDQGYVLDEDQDYALEEDVPLFLDEDVPLLPSVKLPIVEKLPRSITWVFTKSSQLMAESDSVIGKRQIYYLNGEALELSSEEDEEDEEEDEEEIKKEKCEFSEDVDRFIWTVGQDYGLDDLVVRRALAKYLEVDVSDILERYNELKLKNDGTAGEASDLTSKTITTAFQDFADRRHCRRCMIFDCHMHEKYEPESRSSEDKSSLFEDEDRQPCSEHCYLKVRSVTEADHVMDNDNSISNKIVVSDPNNTMWTPVEKDLYLKGIEIFGRNSCDVALNILRGLKTCLEIYNYMREQDQCTMSLDLNKTTQRHNQVTKKVSRKSSRSVRKKSRLRKYARYPPALKKTTSGEAKFYKHYTPCTCKSKCGQQCPCLTHENCCEKYCGCSKDCNNRFGGCNCAIGQCTNRQCPCFAANRECDPDLCRSCPLSCGDGTLGETPVQIQCKNMQFLLQTNKKILIGKSDVHGWGAFTWVSNHVNIRISLIVIGAFITLFFF